IDEAS home Printed from https://ideas.repec.org/a/nat/natene/v4y2019i3d10.1038_s41560-019-0333-2.html
   My bibliography  Save this article

Highly efficient reversible protonic ceramic electrochemical cells for power generation and fuel production

Author

Listed:
  • Chuancheng Duan

    (Colorado School of Mines)

  • Robert Kee

    (Colorado School of Mines)

  • Huayang Zhu

    (Colorado School of Mines)

  • Neal Sullivan

    (Colorado School of Mines)

  • Liangzhu Zhu

    (Colorado School of Mines)

  • Liuzhen Bian

    (Colorado School of Mines)

  • Dylan Jennings

    (Colorado School of Mines)

  • Ryan O’Hayre

    (Colorado School of Mines)

Abstract

Reversible fuel cells based on both proton exchange membrane fuel cell and solid oxide fuel cell technologies have been proposed to address energy storage and conversion challenges and to provide versatile pathways for renewable fuels production. Both technologies suffer challenges associated with cost, durability, low round-trip efficiency and the need to separate H2O from the product fuel. Here, we present a reversible protonic ceramic electrochemical cell based on an yttrium and ytterbium co-doped barium cerate–zirconate electrolyte and a triple-conducting oxide air/steam (reversible) electrode that addresses many of these issues. Our reversible protonic ceramic electrochemical cell achieves a high Faradaic efficiency (90–98%) and can operate endothermically with a >97% overall electric-to-hydrogen energy conversion efficiency (based on the lower heating value of H2) at a current density of −1,000 mA cm−2. Even higher efficiencies are obtained for H2O electrolysis with co-fed CO2 to produce CO and CH4. We demonstrate a repeatable round-trip (electricity-to-hydrogen-to-electricity) efficiency of >75% and stable operation, with a degradation rate of

Suggested Citation

  • Chuancheng Duan & Robert Kee & Huayang Zhu & Neal Sullivan & Liangzhu Zhu & Liuzhen Bian & Dylan Jennings & Ryan O’Hayre, 2019. "Highly efficient reversible protonic ceramic electrochemical cells for power generation and fuel production," Nature Energy, Nature, vol. 4(3), pages 230-240, March.
  • Handle: RePEc:nat:natene:v:4:y:2019:i:3:d:10.1038_s41560-019-0333-2
    DOI: 10.1038/s41560-019-0333-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41560-019-0333-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41560-019-0333-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Badakhsh, Arash & Mothilal Bhagavathy, Sivapriya, 2024. "Caveats of green hydrogen for decarbonisation of heating in buildings," Applied Energy, Elsevier, vol. 353(PB).
    2. Chang, Wanhyuk & Kang, Eun Heui & Jeong, Heon Jun & Choi, Wonjoon & Shim, Joon Hyung, 2023. "Inkjet printing of perovskite ceramics for high-performance proton ceramic fuel cells," Energy, Elsevier, vol. 268(C).
    3. Lu, Lianmei & Liu, Wu & Wang, Jianxin & Wang, Yudong & Xia, Changrong & Zhou, Xiao-Dong & Chen, Ming & Guan, Wanbing, 2020. "Long-term stability of carbon dioxide electrolysis in a large-scale flat-tube solid oxide electrolysis cell based on double-sided air electrodes," Applied Energy, Elsevier, vol. 259(C).
    4. Fan Liu & Chuancheng Duan, 2021. "Direct-Hydrocarbon Proton-Conducting Solid Oxide Fuel Cells," Sustainability, MDPI, vol. 13(9), pages 1-9, April.
    5. Das, Jagat & Sahu, Partha Pratim, 2021. "Water splitting with screw pitched cylindrical electrode and Fe(OH)2 catalyst under 1.4 V," Renewable Energy, Elsevier, vol. 165(P1), pages 525-532.
    6. Li, Zheng & Yu, Jie & Wang, Chen & Bello, Idris Temitope & Yu, Na & Chen, Xi & Zheng, Keqing & Han, Minfang & Ni, Meng, 2024. "Multi-objective optimization of protonic ceramic electrolysis cells based on a deep neural network surrogate model," Applied Energy, Elsevier, vol. 365(C).
    7. Gür, Turgut M., 2024. "Giga-ton and tera-watt scale challenges at the energy - climate crossroads: A global perspective," Energy, Elsevier, vol. 290(C).
    8. Ze Liu & Yufei Song & Xiaolu Xiong & Yuxuan Zhang & Jingzeng Cui & Jianqiu Zhu & Lili Li & Jing Zhou & Chuan Zhou & Zhiwei Hu & Guntae Kim & Francesco Ciucci & Zongping Shao & Jian-Qiang Wang & Linjua, 2023. "Sintering-induced cation displacement in protonic ceramics and way for its suppression," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    9. Zuoqing Liu & Yuesheng Bai & Hainan Sun & Daqin Guan & Wenhuai Li & Wei-Hsiang Huang & Chih-Wen Pao & Zhiwei Hu & Guangming Yang & Yinlong Zhu & Ran Ran & Wei Zhou & Zongping Shao, 2024. "Synergistic dual-phase air electrode enables high and durable performance of reversible proton ceramic electrochemical cells," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    10. Barckholtz, Timothy A. & Taylor, Kevin M. & Narayanan, Sundar & Jolly, Stephen & Ghezel-Ayagh, Hossein, 2022. "Molten carbonate fuel cells for simultaneous CO2 capture, power generation, and H2 generation," Applied Energy, Elsevier, vol. 313(C).
    11. Lee, Dong-Young & Mehran, Muhammad Taqi & Kim, Jonghwan & Kim, Sangcho & Lee, Seung-Bok & Song, Rak-Hyun & Ko, Eun-Yong & Hong, Jong-Eun & Huh, Joo-Youl & Lim, Tak-Hyoung, 2020. "Scaling up syngas production with controllable H2/CO ratio in a highly efficient, compact, and durable solid oxide coelectrolysis cell unit-bundle," Applied Energy, Elsevier, vol. 257(C).
    12. Serdar Yilmaz & Bekir Kavici & Prakash Ramakrishnan & Cigdem Celen & Bahman Amini Horri, 2023. "Highly Conductive Cerium- and Neodymium-Doped Barium Zirconate Perovskites for Protonic Ceramic Fuel Cells," Energies, MDPI, vol. 16(11), pages 1-14, May.
    13. Mohsen Fallah Vostakola & Hasan Ozcan & Rami S. El-Emam & Bahman Amini Horri, 2023. "Recent Advances in High-Temperature Steam Electrolysis with Solid Oxide Electrolysers for Green Hydrogen Production," Energies, MDPI, vol. 16(8), pages 1-50, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natene:v:4:y:2019:i:3:d:10.1038_s41560-019-0333-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.