IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-023-44677-y.html
   My bibliography  Save this article

Ultrasmall single-layered NbSe2 nanotubes flattened within a chemical-driven self-pressurized carbon nanotube

Author

Listed:
  • Yaxin Jiang

    (Tsinghua University)

  • Hao Xiong

    (Tsinghua University)

  • Tianping Ying

    (Chinese Academy of Sciences)

  • Guo Tian

    (Tsinghua University)

  • Xiao Chen

    (Tsinghua University
    Ordos Laboratory)

  • Fei Wei

    (Tsinghua University
    Ordos Laboratory)

Abstract

Pressure can alter interatomic distances and its electrostatic interactions, exerting a profound modifying effect on electron orbitals and bonding patterns. Conventional pressure engineering relies on compressions from external sources, which raises significant challenge in precisely applying pressure on individual molecules and also consume substantial mechanical energy. Here we report ultrasmall single-layered NbSe2 flat tubes (

Suggested Citation

  • Yaxin Jiang & Hao Xiong & Tianping Ying & Guo Tian & Xiao Chen & Fei Wei, 2024. "Ultrasmall single-layered NbSe2 nanotubes flattened within a chemical-driven self-pressurized carbon nanotube," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-023-44677-y
    DOI: 10.1038/s41467-023-44677-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-44677-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-44677-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ji Eun Lee & Gwanghyun Ahn & Jihye Shim & Young Sik Lee & Sunmin Ryu, 2012. "Optical separation of mechanical strain from charge doping in graphene," Nature Communications, Nature, vol. 3(1), pages 1-8, January.
    2. Yanming Ma & Mikhail Eremets & Artem R. Oganov & Yu Xie & Ivan Trojan & Sergey Medvedev & Andriy O. Lyakhov & Mario Valle & Vitali Prakapenka, 2009. "Transparent dense sodium," Nature, Nature, vol. 458(7235), pages 182-185, March.
    3. Quan Huang & Dongli Yu & Bo Xu & Wentao Hu & Yanming Ma & Yanbin Wang & Zhisheng Zhao & Bin Wen & Julong He & Zhongyuan Liu & Yongjun Tian, 2014. "Nanotwinned diamond with unprecedented hardness and stability," Nature, Nature, vol. 510(7504), pages 250-253, June.
    4. Junxiang Jia & Elizabeth Marcellina & Anirban Das & Michael S. Lodge & BaoKai Wang & Duc-Quan Ho & Riddhi Biswas & Tuan Anh Pham & Wei Tao & Cheng-Yi Huang & Hsin Lin & Arun Bansil & Shantanu Mukherje, 2022. "Tuning the many-body interactions in a helical Luttinger liquid," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    5. Katsuya Shimizu & Hiroto Ishikawa & Daigoroh Takao & Takehiko Yagi & Kiichi Amaya, 2002. "Superconductivity in compressed lithium at 20 K," Nature, Nature, vol. 419(6907), pages 597-599, October.
    6. Marc Bockrath & David H. Cobden & Jia Lu & Andrew G. Rinzler & Richard E. Smalley & Leon Balents & Paul L. McEuen, 1999. "Luttinger-liquid behaviour in carbon nanotubes," Nature, Nature, vol. 397(6720), pages 598-601, February.
    7. L. Dubrovinsky & N. Dubrovinskaia & E. Bykova & M. Bykov & V. Prakapenka & C. Prescher & K. Glazyrin & H.-P. Liermann & M. Hanfland & M. Ekholm & Q. Feng & L. V. Pourovskii & M. I. Katsnelson & J. M. , 2015. "The most incompressible metal osmium at static pressures above 750 gigapascals," Nature, Nature, vol. 525(7568), pages 226-229, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaoyang Wang & Zhenyu Wang & Pengyue Gao & Chengqian Zhang & Jian Lv & Han Wang & Haifeng Liu & Yanchao Wang & Yanming Ma, 2023. "Data-driven prediction of complex crystal structures of dense lithium," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    2. Anqi Wang & Yupeng Li & Guang Yang & Dayu Yan & Yuan Huang & Zhaopeng Guo & Jiacheng Gao & Jierui Huang & Qiaochu Zeng & Degui Qian & Hao Wang & Xingchen Guo & Fanqi Meng & Qinghua Zhang & Lin Gu & Xi, 2023. "A robust and tunable Luttinger liquid in correlated edge of transition-metal second-order topological insulator Ta2Pd3Te5," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Hao-Ting Chin & Jiri Klimes & I-Fan Hu & Ding-Rui Chen & Hai-Thai Nguyen & Ting-Wei Chen & Shao-Wei Ma & Mario Hofmann & Chi-Te Liang & Ya-Ping Hsieh, 2021. "Ferroelectric 2D ice under graphene confinement," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    4. Shu Cai & Jinyu Zhao & Ni Ni & Jing Guo & Run Yang & Pengyu Wang & Jinyu Han & Sijin Long & Yazhou Zhou & Qi Wu & Xianggang Qiu & Tao Xiang & Robert J. Cava & Liling Sun, 2023. "The breakdown of both strange metal and superconducting states at a pressure-induced quantum critical point in iron-pnictide superconductors," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    5. Haiyue Xu & Wei Ji & Jiawei Jiang & Junliang Liu & Hao Wang & Fan Zhang & Ruohan Yu & Bingtian Tu & Jinyong Zhang & Ji Zou & Weimin Wang & Jinsong Wu & Zhengyi Fu, 2023. "Contribution of boundary non-stoichiometry to the lower-temperature plasticity in high-pressure sintered boron carbide," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    6. Guowen Yuan & Weilin Liu & Xianlei Huang & Zihao Wan & Chao Wang & Bing Yao & Wenjie Sun & Hang Zheng & Kehan Yang & Zhenjia Zhou & Yuefeng Nie & Jie Xu & Libo Gao, 2023. "Stacking transfer of wafer-scale graphene-based van der Waals superlattices," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    7. Yong-Jie Xu & Guohua Cao & Qi-Yuan Li & Cheng-Long Xue & Wei-Min Zhao & Qi-Wei Wang & Li-Guo Dou & Xuan Du & Yu-Xin Meng & Yuan-Kun Wang & Yu-Hang Gao & Zhen-Yu Jia & Wei Li & Lianlian Ji & Fang-Sen L, 2024. "Realization of monolayer ZrTe5 topological insulators with wide band gaps," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    8. M. I. Eremets & V. S. Minkov & P. P. Kong & A. P. Drozdov & S. Chariton & V. B. Prakapenka, 2023. "Universal diamond edge Raman scale to 0.5 terapascal and implications for the metallization of hydrogen," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    9. Danae N. Polsin & Amy Lazicki & Xuchen Gong & Stephen J. Burns & Federica Coppari & Linda E. Hansen & Brian J. Henderson & Margaret F. Huff & Malcolm I. McMahon & Marius Millot & Reetam Paul & Raymond, 2022. "Structural complexity in ramp-compressed sodium to 480 GPa," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    10. Yuecun Wang & Xudong Wang & Jun Ding & Beiming Liang & Lingling Zuo & Shaochuan Zheng & Longchao Huang & Wei Xu & Chuanwei Fan & Zhanqiang Duan & Chunde Jia & Rui Zheng & Zhang Liu & Wei Zhang & Ju Li, 2024. "Inward motion of diamond nanoparticles inside an iron crystal," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    11. Xuesong Yang & Linfeng Lan & Liang Li & Xiaokong Liu & PanĨe Naumov & Hongyu Zhang, 2022. "Remote and precise control over morphology and motion of organic crystals by using magnetic field," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    12. Mingliang Han & Yuan Wu & Xiaobin Zong & Yaozu Shen & Fei Zhang & Hongbo Lou & Xiao Dong & Zhidan Zeng & Xiangyang Peng & Shuo Hou & Guangyao Lu & Lianghua Xiong & Bingmin Yan & Huiyang Gou & Yanping , 2024. "Lightweight single-phase Al-based complex concentrated alloy with high specific strength," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    13. Changling Zhang & Xin He & Chang Liu & Zhiwen Li & Ke Lu & Sijia Zhang & Shaomin Feng & Xiancheng Wang & Yi Peng & Youwen Long & Richeng Yu & Luhong Wang & Vitali Prakapenka & Stella Chariton & Quan L, 2022. "Record high Tc element superconductivity achieved in titanium," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    14. Xin Gao & Liming Zheng & Fang Luo & Jun Qian & Jingyue Wang & Mingzhi Yan & Wendong Wang & Qinci Wu & Junchuan Tang & Yisen Cao & Congwei Tan & Jilin Tang & Mengjian Zhu & Yani Wang & Yanglizhi Li & L, 2022. "Integrated wafer-scale ultra-flat graphene by gradient surface energy modulation," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    15. Yan Liu & Rui Wang & Zhigang Wang & Da Li & Tian Cui, 2022. "Formation of twelve-fold iodine coordination at high pressure," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    16. Yixuan Zhao & Yuqing Song & Zhaoning Hu & Wendong Wang & Zhenghua Chang & Yan Zhang & Qi Lu & Haotian Wu & Junhao Liao & Wentao Zou & Xin Gao & Kaicheng Jia & La Zhuo & Jingyi Hu & Qin Xie & Rui Zhang, 2022. "Large-area transfer of two-dimensional materials free of cracks, contamination and wrinkles via controllable conformal contact," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    17. Jianan Yin & Yang Yan & Mulin Miao & Jiayin Tang & Jiali Jiang & Hui Liu & Yuhan Chen & Yinxian Chen & Fucong Lyu & Zhengyi Mao & Yunhu He & Lei Wan & Binbin Zhou & Jian Lu, 2024. "Diamond with Sp2-Sp3 composite phase for thermometry at Millikelvin temperatures," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    18. Junxiang Jia & Elizabeth Marcellina & Anirban Das & Michael S. Lodge & BaoKai Wang & Duc-Quan Ho & Riddhi Biswas & Tuan Anh Pham & Wei Tao & Cheng-Yi Huang & Hsin Lin & Arun Bansil & Shantanu Mukherje, 2022. "Tuning the many-body interactions in a helical Luttinger liquid," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    19. Guo Yu & Pengjie Wang & Ayelet J. Uzan-Narovlansky & Yanyu Jia & Michael Onyszczak & Ratnadwip Singha & Xin Gui & Tiancheng Song & Yue Tang & Kenji Watanabe & Takashi Taniguchi & Robert J. Cava & Lesl, 2023. "Evidence for two dimensional anisotropic Luttinger liquids at millikelvin temperatures," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    20. Zhao Wang & Wenlin Liu & Jiaxin Shao & He Hao & Guorui Wang & Yixuan Zhao & Yeshu Zhu & Kaicheng Jia & Qi Lu & Jiawei Yang & Yanfeng Zhang & Lianming Tong & Yuqing Song & Pengzhan Sun & Boyang Mao & C, 2024. "Cyclododecane-based high-intactness and clean transfer method for fabricating suspended two-dimensional materials," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-023-44677-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.