IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-48692-5.html
   My bibliography  Save this article

Inward motion of diamond nanoparticles inside an iron crystal

Author

Listed:
  • Yuecun Wang

    (Xi’an Jiaotong University)

  • Xudong Wang

    (Xi’an Jiaotong University)

  • Jun Ding

    (Xi’an Jiaotong University)

  • Beiming Liang

    (Xi’an Jiaotong University)

  • Lingling Zuo

    (Xi’an Jiaotong University)

  • Shaochuan Zheng

    (Xi’an Jiaotong University)

  • Longchao Huang

    (Xi’an Jiaotong University)

  • Wei Xu

    (Xi’an Jiaotong University)

  • Chuanwei Fan

    (Xi’an Jiaotong University)

  • Zhanqiang Duan

    (Shenyang Ligong University)

  • Chunde Jia

    (Shenyang Ligong University)

  • Rui Zheng

    (Xi’an Jiaotong University)

  • Zhang Liu

    (Xi’an Jiaotong University)

  • Wei Zhang

    (Xi’an Jiaotong University)

  • Ju Li

    (Massachusetts Institute of Technology)

  • En Ma

    (Xi’an Jiaotong University)

  • Zhiwei Shan

    (Xi’an Jiaotong University)

Abstract

In the absence of externally applied mechanical loading, it would seem counterintuitive that a solid particle sitting on the surface of another solid could not only sink into the latter, but also continue its rigid-body motion towards the interior, reaching a depth as distant as thousands of times the particle diameter. Here, we demonstrate such a case using in situ microscopic as well as bulk experiments, in which diamond nanoparticles ~100 nm in size move into iron up to millimeter depth, at a temperature about half of the melting point of iron. Each diamond nanoparticle is nudged as a whole, in a displacive motion towards the iron interior, due to a local stress induced by the accumulation of iron atoms diffusing around the particle via a short and easy interfacial channel. Our discovery underscores an unusual mass transport mode in solids, in addition to the familiar diffusion of individual atoms.

Suggested Citation

  • Yuecun Wang & Xudong Wang & Jun Ding & Beiming Liang & Lingling Zuo & Shaochuan Zheng & Longchao Huang & Wei Xu & Chuanwei Fan & Zhanqiang Duan & Chunde Jia & Rui Zheng & Zhang Liu & Wei Zhang & Ju Li, 2024. "Inward motion of diamond nanoparticles inside an iron crystal," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48692-5
    DOI: 10.1038/s41467-024-48692-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-48692-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-48692-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Anmin Nie & Yeqiang Bu & Penghui Li & Yizhi Zhang & Tianye Jin & Jiabin Liu & Zhang Su & Yanbin Wang & Julong He & Zhongyuan Liu & Hongtao Wang & Yongjun Tian & Wei Yang, 2019. "Approaching diamond’s theoretical elasticity and strength limits," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
    2. Quan Huang & Dongli Yu & Bo Xu & Wentao Hu & Yanming Ma & Yanbin Wang & Zhisheng Zhao & Bin Wen & Julong He & Zhongyuan Liu & Yongjun Tian, 2014. "Nanotwinned diamond with unprecedented hardness and stability," Nature, Nature, vol. 510(7504), pages 250-253, June.
    3. Meng Li & De-Gang Xie & Evan Ma & Ju Li & Xi-Xiang Zhang & Zhi-Wei Shan, 2017. "Effect of hydrogen on the integrity of aluminium–oxide interface at elevated temperatures," Nature Communications, Nature, vol. 8(1), pages 1-7, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xuesong Yang & Linfeng Lan & Liang Li & Xiaokong Liu & Panče Naumov & Hongyu Zhang, 2022. "Remote and precise control over morphology and motion of organic crystals by using magnetic field," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Yaxin Jiang & Hao Xiong & Tianping Ying & Guo Tian & Xiao Chen & Fei Wei, 2024. "Ultrasmall single-layered NbSe2 nanotubes flattened within a chemical-driven self-pressurized carbon nanotube," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    3. Mingliang Han & Yuan Wu & Xiaobin Zong & Yaozu Shen & Fei Zhang & Hongbo Lou & Xiao Dong & Zhidan Zeng & Xiangyang Peng & Shuo Hou & Guangyao Lu & Lianghua Xiong & Bingmin Yan & Huiyang Gou & Yanping , 2024. "Lightweight single-phase Al-based complex concentrated alloy with high specific strength," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Wenqing Zhu & Zhi Li & Hua Shu & Huajian Gao & Xiaoding Wei, 2024. "Amorphous alloys surpass E/10 strength limit at extreme strain rates," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    5. Jianan Yin & Yang Yan & Mulin Miao & Jiayin Tang & Jiali Jiang & Hui Liu & Yuhan Chen & Yinxian Chen & Fucong Lyu & Zhengyi Mao & Yunhu He & Lei Wan & Binbin Zhou & Jian Lu, 2024. "Diamond with Sp2-Sp3 composite phase for thermometry at Millikelvin temperatures," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    6. Haiyue Xu & Wei Ji & Jiawei Jiang & Junliang Liu & Hao Wang & Fan Zhang & Ruohan Yu & Bingtian Tu & Jinyong Zhang & Ji Zou & Weimin Wang & Jinsong Wu & Zhengyi Fu, 2023. "Contribution of boundary non-stoichiometry to the lower-temperature plasticity in high-pressure sintered boron carbide," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    7. Yeqiang Bu & Yuan Wu & Zhifeng Lei & Xiaoyuan Yuan & Leqing Liu & Peng Wang & Xiongjun Liu & Honghui Wu & Jiabin Liu & Hongtao Wang & R. O. Ritchie & Zhaoping Lu & Wei Yang, 2024. "Elastic strain-induced amorphization in high-entropy alloys," Nature Communications, Nature, vol. 15(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48692-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.