IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-38650-y.html
   My bibliography  Save this article

Data-driven prediction of complex crystal structures of dense lithium

Author

Listed:
  • Xiaoyang Wang

    (Jilin University
    Institute of Applied Physics and Computational Mathematics)

  • Zhenyu Wang

    (Jilin University)

  • Pengyue Gao

    (Jilin University)

  • Chengqian Zhang

    (DP Technology
    Peking University)

  • Jian Lv

    (Jilin University)

  • Han Wang

    (Institute of Applied Physics and Computational Mathematics
    Peking University)

  • Haifeng Liu

    (Institute of Applied Physics and Computational Mathematics)

  • Yanchao Wang

    (Jilin University)

  • Yanming Ma

    (Jilin University)

Abstract

Lithium (Li) is a prototypical simple metal at ambient conditions, but exhibits remarkable changes in structural and electronic properties under compression. There has been intense debate about the structure of dense Li, and recent experiments offered fresh evidence for yet undetermined crystalline phases near the enigmatic melting minimum region in the pressure-temperature phase diagram of Li. Here, we report on an extensive exploration of the energy landscape of Li using an advanced crystal structure search method combined with a machine-learning approach, which greatly expands the scale of structure search, leading to the prediction of four complex Li crystal structures containing up to 192 atoms in the unit cell that are energetically competitive with known Li structures. These findings provide a viable solution to the observed yet unidentified crystalline phases of Li, and showcase the predictive power of the global structure search method for discovering complex crystal structures in conjunction with accurate machine learning potentials.

Suggested Citation

  • Xiaoyang Wang & Zhenyu Wang & Pengyue Gao & Chengqian Zhang & Jian Lv & Han Wang & Haifeng Liu & Yanchao Wang & Yanming Ma, 2023. "Data-driven prediction of complex crystal structures of dense lithium," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38650-y
    DOI: 10.1038/s41467-023-38650-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-38650-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-38650-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. M. Hanfland & K. Syassen & N. E. Christensen & D. L. Novikov, 2000. "New high-pressure phases of lithium," Nature, Nature, vol. 408(6809), pages 174-178, November.
    2. Yanming Ma & Mikhail Eremets & Artem R. Oganov & Yu Xie & Ivan Trojan & Sergey Medvedev & Andriy O. Lyakhov & Mario Valle & Vitali Prakapenka, 2009. "Transparent dense sodium," Nature, Nature, vol. 458(7235), pages 182-185, March.
    3. J. B. Neaton & N. W. Ashcroft, 1999. "Pairing in dense lithium," Nature, Nature, vol. 400(6740), pages 141-144, July.
    4. Takahiro Matsuoka & Katsuya Shimizu, 2009. "Direct observation of a pressure-induced metal-to-semiconductor transition in lithium," Nature, Nature, vol. 458(7235), pages 186-189, March.
    5. Katsuya Shimizu & Hiroto Ishikawa & Daigoroh Takao & Takehiko Yagi & Kiichi Amaya, 2002. "Superconductivity in compressed lithium at 20 K," Nature, Nature, vol. 419(6907), pages 597-599, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mingfeng Liu & Jiantao Wang & Junwei Hu & Peitao Liu & Haiyang Niu & Xuexi Yan & Jiangxu Li & Haile Yan & Bo Yang & Yan Sun & Chunlin Chen & Georg Kresse & Liang Zuo & Xing-Qiu Chen, 2024. "Layer-by-layer phase transformation in Ti3O5 revealed by machine-learning molecular dynamics simulations," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yaxin Jiang & Hao Xiong & Tianping Ying & Guo Tian & Xiao Chen & Fei Wei, 2024. "Ultrasmall single-layered NbSe2 nanotubes flattened within a chemical-driven self-pressurized carbon nanotube," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    2. Danae N. Polsin & Amy Lazicki & Xuchen Gong & Stephen J. Burns & Federica Coppari & Linda E. Hansen & Brian J. Henderson & Margaret F. Huff & Malcolm I. McMahon & Marius Millot & Reetam Paul & Raymond, 2022. "Structural complexity in ramp-compressed sodium to 480 GPa," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    3. Shu Cai & Jinyu Zhao & Ni Ni & Jing Guo & Run Yang & Pengyu Wang & Jinyu Han & Sijin Long & Yazhou Zhou & Qi Wu & Xianggang Qiu & Tao Xiang & Robert J. Cava & Liling Sun, 2023. "The breakdown of both strange metal and superconducting states at a pressure-induced quantum critical point in iron-pnictide superconductors," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    4. Changling Zhang & Xin He & Chang Liu & Zhiwen Li & Ke Lu & Sijia Zhang & Shaomin Feng & Xiancheng Wang & Yi Peng & Youwen Long & Richeng Yu & Luhong Wang & Vitali Prakapenka & Stella Chariton & Quan L, 2022. "Record high Tc element superconductivity achieved in titanium," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    5. Yan Liu & Rui Wang & Zhigang Wang & Da Li & Tian Cui, 2022. "Formation of twelve-fold iodine coordination at high pressure," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    6. M. I. Eremets & V. S. Minkov & P. P. Kong & A. P. Drozdov & S. Chariton & V. B. Prakapenka, 2023. "Universal diamond edge Raman scale to 0.5 terapascal and implications for the metallization of hydrogen," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    7. J. Lim & A. C. Hire & Y. Quan & J. S. Kim & S. R. Xie & S. Sinha & R. S. Kumar & D. Popov & C. Park & R. J. Hemley & Y. K. Vohra & J. J. Hamlin & R. G. Hennig & P. J. Hirschfeld & G. R. Stewart, 2022. "Creating superconductivity in WB2 through pressure-induced metastable planar defects," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38650-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.