IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v397y1999i6720d10.1038_17569.html
   My bibliography  Save this article

Luttinger-liquid behaviour in carbon nanotubes

Author

Listed:
  • Marc Bockrath

    (Lawrence Berkeley National Laboratory)

  • David H. Cobden

    (Lawrence Berkeley National Laboratory)

  • Jia Lu

    (Lawrence Berkeley National Laboratory)

  • Andrew G. Rinzler

    (MS-100, Rice University)

  • Richard E. Smalley

    (MS-100, Rice University)

  • Leon Balents

    (Institute for Theoretical Physics, University of California)

  • Paul L. McEuen

    (Lawrence Berkeley National Laboratory)

Abstract

Electron transport in conductors is usually well described by Fermi-liquid theory, which assumes that the energy states of the electrons near the Fermi level EF are not qualitatively altered by Coulomb interactions. In one-dimensional systems, however, even weak Coulomb interactions cause strong perturbations. The resulting system, known as a Luttinger liquid, is predicted to be distinctly different from its two- and three-dimensional counterparts1. For example, tunnelling into a Luttinger liquid at energies near the Fermi level is predicted to be strongly suppressed, unlike in two- and three-dimensional metals. Experiments on one-dimensional semiconductor wires2, 2,3 have been interpreted by using Luttinger-liquid theory, but an unequivocal verification of the theoretical predictions has not yet been obtained. Similarly, the edge excitations seen in fractional quantum Hall conductors are consistent with Luttinger-liquid behaviour4, 5, but recent experiments failed to confirm the predicted relationship between the electrical properties of the bulk state and those of the edge states6. Electrically conducting single-walled carbon nanotubes (SWNTs) represent quantum wires7,8,9,10 that may exhibit Luttinger-liquid behaviour11, 12. Here we present measurements of the conductance of bundles (‘ropes’) of SWNTs as a function of temperature and voltage that agree with predictions for tunnelling into a Luttinger liquid. In particular, we find that the conductance and differential conductance scale as power laws with respect to temperature and bias voltage, respectively, and that the functional forms and the exponents are in good agreement with theoretical predictions.

Suggested Citation

  • Marc Bockrath & David H. Cobden & Jia Lu & Andrew G. Rinzler & Richard E. Smalley & Leon Balents & Paul L. McEuen, 1999. "Luttinger-liquid behaviour in carbon nanotubes," Nature, Nature, vol. 397(6720), pages 598-601, February.
  • Handle: RePEc:nat:nature:v:397:y:1999:i:6720:d:10.1038_17569
    DOI: 10.1038/17569
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/17569
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/17569?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guo Yu & Pengjie Wang & Ayelet J. Uzan-Narovlansky & Yanyu Jia & Michael Onyszczak & Ratnadwip Singha & Xin Gui & Tiancheng Song & Yue Tang & Kenji Watanabe & Takashi Taniguchi & Robert J. Cava & Lesl, 2023. "Evidence for two dimensional anisotropic Luttinger liquids at millikelvin temperatures," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    2. Anqi Wang & Yupeng Li & Guang Yang & Dayu Yan & Yuan Huang & Zhaopeng Guo & Jiacheng Gao & Jierui Huang & Qiaochu Zeng & Degui Qian & Hao Wang & Xingchen Guo & Fanqi Meng & Qinghua Zhang & Lin Gu & Xi, 2023. "A robust and tunable Luttinger liquid in correlated edge of transition-metal second-order topological insulator Ta2Pd3Te5," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Junxiang Jia & Elizabeth Marcellina & Anirban Das & Michael S. Lodge & BaoKai Wang & Duc-Quan Ho & Riddhi Biswas & Tuan Anh Pham & Wei Tao & Cheng-Yi Huang & Hsin Lin & Arun Bansil & Shantanu Mukherje, 2022. "Tuning the many-body interactions in a helical Luttinger liquid," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    4. Yaxin Jiang & Hao Xiong & Tianping Ying & Guo Tian & Xiao Chen & Fei Wei, 2024. "Ultrasmall single-layered NbSe2 nanotubes flattened within a chemical-driven self-pressurized carbon nanotube," Nature Communications, Nature, vol. 15(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:397:y:1999:i:6720:d:10.1038_17569. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.