IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v614y2023i7948d10.1038_s41586-022-05585-1.html
   My bibliography  Save this article

Realization of a minimal Kitaev chain in coupled quantum dots

Author

Listed:
  • Tom Dvir

    (Delft University of Technology
    Delft University of Technology)

  • Guanzhong Wang

    (Delft University of Technology
    Delft University of Technology)

  • Nick Loo

    (Delft University of Technology
    Delft University of Technology)

  • Chun-Xiao Liu

    (Delft University of Technology
    Delft University of Technology)

  • Grzegorz P. Mazur

    (Delft University of Technology
    Delft University of Technology)

  • Alberto Bordin

    (Delft University of Technology
    Delft University of Technology)

  • Sebastiaan L. D. Haaf

    (Delft University of Technology
    Delft University of Technology)

  • Ji-Yin Wang

    (Delft University of Technology
    Delft University of Technology)

  • David Driel

    (Delft University of Technology
    Delft University of Technology)

  • Francesco Zatelli

    (Delft University of Technology
    Delft University of Technology)

  • Xiang Li

    (Delft University of Technology
    Delft University of Technology)

  • Filip K. Malinowski

    (Delft University of Technology
    Delft University of Technology)

  • Sasa Gazibegovic

    (Eindhoven University of Technology)

  • Ghada Badawy

    (Eindhoven University of Technology)

  • Erik P. A. M. Bakkers

    (Eindhoven University of Technology)

  • Michael Wimmer

    (Delft University of Technology
    Delft University of Technology)

  • Leo P. Kouwenhoven

    (Delft University of Technology
    Delft University of Technology)

Abstract

Majorana bound states constitute one of the simplest examples of emergent non-Abelian excitations in condensed matter physics. A toy model proposed by Kitaev shows that such states can arise at the ends of a spinless p-wave superconducting chain1. Practical proposals for its realization2,3 require coupling neighbouring quantum dots (QDs) in a chain through both electron tunnelling and crossed Andreev reflection4. Although both processes have been observed in semiconducting nanowires and carbon nanotubes5–8, crossed-Andreev interaction was neither easily tunable nor strong enough to induce coherent hybridization of dot states. Here we demonstrate the simultaneous presence of all necessary ingredients for an artificial Kitaev chain: two spin-polarized QDs in an InSb nanowire strongly coupled by both elastic co-tunnelling (ECT) and crossed Andreev reflection (CAR). We fine-tune this system to a sweet spot where a pair of poor man’s Majorana states is predicted to appear. At this sweet spot, the transport characteristics satisfy the theoretical predictions for such a system, including pairwise correlation, zero charge and stability against local perturbations. Although the simple system presented here can be scaled to simulate a full Kitaev chain with an emergent topological order, it can also be used imminently to explore relevant physics related to non-Abelian anyons.

Suggested Citation

  • Tom Dvir & Guanzhong Wang & Nick Loo & Chun-Xiao Liu & Grzegorz P. Mazur & Alberto Bordin & Sebastiaan L. D. Haaf & Ji-Yin Wang & David Driel & Francesco Zatelli & Xiang Li & Filip K. Malinowski & Sas, 2023. "Realization of a minimal Kitaev chain in coupled quantum dots," Nature, Nature, vol. 614(7948), pages 445-450, February.
  • Handle: RePEc:nat:nature:v:614:y:2023:i:7948:d:10.1038_s41586-022-05585-1
    DOI: 10.1038/s41586-022-05585-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-022-05585-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-022-05585-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Juan Carlos Estrada Saldaña & Alexandros Vekris & Luka Pavešič & Rok Žitko & Kasper Grove-Rasmussen & Jesper Nygård, 2024. "Correlation between two distant quasiparticles in separate superconducting islands mediated by a single spin," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    2. Francesco Zatelli & David van Driel & Di Xu & Guanzhong Wang & Chun-Xiao Liu & Alberto Bordin & Bart Roovers & Grzegorz P. Mazur & Nick van Loo & Jan C. Wolff & A. Mert Bozkurt & Ghada Badawy & Sasa G, 2024. "Robust poor man’s Majorana zero modes using Yu-Shiba-Rusinov states," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Qingzhen Wang & Sebastiaan L. D. Haaf & Ivan Kulesh & Di Xiao & Candice Thomas & Michael J. Manfra & Srijit Goswami, 2023. "Triplet correlations in Cooper pair splitters realized in a two-dimensional electron gas," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    4. Marco Valentini & Oliver Sagi & Levon Baghumyan & Thijs Gijsel & Jason Jung & Stefano Calcaterra & Andrea Ballabio & Juan Aguilera Servin & Kushagra Aggarwal & Marian Janik & Thomas Adletzberger & Rub, 2024. "Parity-conserving Cooper-pair transport and ideal superconducting diode in planar germanium," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. David Driel & Guanzhong Wang & Alberto Bordin & Nick Loo & Francesco Zatelli & Grzegorz P. Mazur & Di Xu & Sasa Gazibegovic & Ghada Badawy & Erik P. A. M. Bakkers & Leo P. Kouwenhoven & Tom Dvir, 2023. "Spin-filtered measurements of Andreev bound states in semiconductor-superconductor nanowire devices," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:614:y:2023:i:7948:d:10.1038_s41586-022-05585-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.