IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-022-35745-w.html
   My bibliography  Save this article

Circularly polarized electroluminescence from a single-crystal organic microcavity light-emitting diode based on photonic spin-orbit interactions

Author

Listed:
  • Jichao Jia

    (Capital Normal University)

  • Xue Cao

    (Capital Normal University)

  • Xuekai Ma

    (Universität Paderborn)

  • Jianbo De

    (Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin))

  • Jiannian Yao

    (Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin))

  • Stefan Schumacher

    (Universität Paderborn
    University of Arizona)

  • Qing Liao

    (Capital Normal University)

  • Hongbing Fu

    (Capital Normal University)

Abstract

Circularly polarized (CP) electroluminescence from organic light-emitting diodes (OLEDs) has aroused considerable attention for their potential in future display and photonic technologies. The development of CP-OLEDs relies largely on chiral-emitters, which not only remain rare owing to difficulties in design and synthesis but also limit the performance of electroluminescence. When the polarization (pseudospin) degrees of freedom of a photon interact with its orbital angular momentum, photonic spin-orbit interaction (SOI) emerges such as Rashba-Dresselhaus (RD) effect. Here, we demonstrate a chiral-emitter-free microcavity CP-OLED with a high dissymmetry factor (gEL) and high luminance by embedding a thin two-dimensional organic single crystal (2D-OSC) between two silver layers which serve as two metallic mirrors forming a microcavity and meanwhile also as two electrodes in an OLED architecture. In the presence of the RD effect, the SOIs in the birefringent 2D-OSC microcavity result in a controllable spin-splitting with CP dispersions. Thanks to the high emission efficiency and high carrier mobility of the OSC, chiral-emitter-free CP-OLEDs have been demonstrated exhibiting a high gEL of 1.1 and a maximum luminance of about 60000 cd/m2, which places our device among the best performing CP-OLEDs. This strategy opens an avenue for practical applications towards on-chip microcavity CP-OLEDs.

Suggested Citation

  • Jichao Jia & Xue Cao & Xuekai Ma & Jianbo De & Jiannian Yao & Stefan Schumacher & Qing Liao & Hongbing Fu, 2023. "Circularly polarized electroluminescence from a single-crystal organic microcavity light-emitting diode based on photonic spin-orbit interactions," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-022-35745-w
    DOI: 10.1038/s41467-022-35745-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-35745-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-35745-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kerry J. Vahala, 2003. "Optical microcavities," Nature, Nature, vol. 424(6950), pages 839-846, August.
    2. Zongsu Han & Kunyu Wang & Yifan Guo & Wenjie Chen & Jiale Zhang & Xinran Zhang & Giuliano Siligardi & Sihai Yang & Zhen Zhou & Pingchuan Sun & Wei Shi & Peng Cheng, 2019. "Cation-induced chirality in a bifunctional metal-organic framework for quantitative enantioselective recognition," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ufuk Kilic & Matthew Hilfiker & Shawn Wimer & Alexander Ruder & Eva Schubert & Mathias Schubert & Christos Argyropoulos, 2024. "Controlling the broadband enhanced light chirality with L-shaped dielectric metamaterials," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Mingjian Zeng & Weiguang Wang & Shuman Zhang & Zhisheng Gao & Yingmeng Yan & Yitong Liu & Yulong Qi & Xin Yan & Wei Zhao & Xin Zhang & Ningning Guo & Huanhuan Li & Hui Li & Gaozhan Xie & Ye Tao & Runf, 2024. "Enabling robust blue circularly polarized organic afterglow through self-confining isolated chiral chromophore," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yeon Ui Lee & Shilong Li & G. Bimananda M. Wisna & Junxiang Zhao & Yuan Zeng & Andrea R. Tao & Zhaowei Liu, 2022. "Hyperbolic material enhanced scattering nanoscopy for label-free super-resolution imaging," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. A. Hashemi & K. Busch & D. N. Christodoulides & S. K. Ozdemir & R. El-Ganainy, 2022. "Linear response theory of open systems with exceptional points," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Jun Guo & Yulong Duan & Yunling Jia & Zelong Zhao & Xiaoqing Gao & Pai Liu & Fangfang Li & Hongli Chen & Yutong Ye & Yujiao Liu & Meiting Zhao & Zhiyong Tang & Yi Liu, 2024. "Biomimetic chiral hydrogen-bonded organic-inorganic frameworks," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Yicheng Zhu & Jiankun Hou & Qi Geng & Boyi Xue & Yuping Chen & Xianfeng Chen & Li Ge & Wenjie Wan, 2024. "Storing light near an exceptional point," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    5. Tingting Wang & Dingyang Zhang & Shiqi Yang & Zhongchong Lin & Quan Chen & Jinbo Yang & Qihuang Gong & Zuxin Chen & Yu Ye & Wenjing Liu, 2023. "Magnetically-dressed CrSBr exciton-polaritons in ultrastrong coupling regime," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    6. Xiyuan Lu & Mingkang Wang & Feng Zhou & Mikkel Heuck & Wenqi Zhu & Vladimir A. Aksyuk & Dirk R. Englund & Kartik Srinivasan, 2023. "Highly-twisted states of light from a high quality factor photonic crystal ring," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    7. Liao, Qinghong & Song, Menglin & Bao, Weida, 2023. "Generation of second-order sideband and slow-fast light effects in a PT-symmetric optomechanical system," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    8. Marcus Ossiander & Maryna Leonidivna Meretska & Sarah Rourke & Christina Spägele & Xinghui Yin & Ileana-Cristina Benea-Chelmus & Federico Capasso, 2023. "Metasurface-stabilized optical microcavities," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    9. Maodong Gao & Qi-Fan Yang & Qing-Xin Ji & Heming Wang & Lue Wu & Boqiang Shen & Junqiu Liu & Guanhao Huang & Lin Chang & Weiqiang Xie & Su-Peng Yu & Scott B. Papp & John E. Bowers & Tobias J. Kippenbe, 2022. "Probing material absorption and optical nonlinearity of integrated photonic materials," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-022-35745-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.