IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-41053-8.html
   My bibliography  Save this article

Heterostructure particles enable omnidispersible in water and oil towards organic dye recycle

Author

Listed:
  • Yongyang Song

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Jiajia Zhou

    (South China University of Technology)

  • Zhongpeng Zhu

    (University of Science and Technology of China)

  • Xiaoxia Li

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Yue Zhang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Xinyi Shen

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Padraic O’Reilly

    (Molecular Vista Inc.)

  • Xiuling Li

    (Chinese Academy of Sciences)

  • Xinmiao Liang

    (Chinese Academy of Sciences)

  • Lei Jiang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences
    University of Science and Technology of China)

  • Shutao Wang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences
    University of Science and Technology of China)

Abstract

Dispersion of colloidal particles in water or oil is extensively desired for industrial and environmental applications. However, it often strongly depends on indispensable assistance of chemical surfactants or introduction of nanoprotrusions onto the particle surface. Here we demonstrate the omnidispersity of hydrophilic-hydrophobic heterostructure particles (HL-HBPs), synthesized by a surface heterogeneous nanostructuring strategy. Photo-induced force microscopy (PiFM) and adhesion force images both indicate the heterogeneous distribution of hydrophilic domains and hydrophobic domains on the particle surface. These alternating domains allow HL-HBPs to be dispersed in various solvents with different polarity and boiling point. The HL-HBPs can efficiently adsorb organic dyes from water and release them into organic solvents within several seconds. The surface heterogeneous nanostructuring strategy provides an unconventional approach to achieve omnidispersion of colloidal particles beyond surface modification, and the omnidispersible HL-HBPs demonstrate superior capability for dye recycle merely by solvent exchange. These omnidispersible HL-HBPs show great potentials in industrial process and environmental protection.

Suggested Citation

  • Yongyang Song & Jiajia Zhou & Zhongpeng Zhu & Xiaoxia Li & Yue Zhang & Xinyi Shen & Padraic O’Reilly & Xiuling Li & Xinmiao Liang & Lei Jiang & Shutao Wang, 2023. "Heterostructure particles enable omnidispersible in water and oil towards organic dye recycle," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41053-8
    DOI: 10.1038/s41467-023-41053-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-41053-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-41053-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. James Mitchell Crow, 2021. "The greener route to indigo blue," Nature, Nature, vol. 599(7885), pages 524-524, November.
    2. Yang Lan & Alessio Caciagli & Giulia Guidetti & Ziyi Yu & Ji Liu & Villads E. Johansen & Marlous Kamp & Chris Abell & Silvia Vignolini & Oren A. Scherman & Erika Eiser, 2018. "Unexpected stability of aqueous dispersions of raspberry-like colloids," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    3. David S. Sholl & Ryan P. Lively, 2016. "Seven chemical separations to change the world," Nature, Nature, vol. 532(7600), pages 435-437, April.
    4. Joong Hwan Bahng & Bongjun Yeom & Yichun Wang & Siu On Tung & J. Damon Hoff & Nicholas Kotov, 2015. "Anomalous dispersions of ‘hedgehog’ particles," Nature, Nature, vol. 517(7536), pages 596-599, January.
    5. Yadong Yin & A. Paul Alivisatos, 2005. "Colloidal nanocrystal synthesis and the organic–inorganic interface," Nature, Nature, vol. 437(7059), pages 664-670, September.
    6. Hao Zhang & Kinjal Dasbiswas & Nicholas B. Ludwig & Gang Han & Byeongdu Lee & Suri Vaikuntanathan & Dmitri V. Talapin, 2017. "Stable colloids in molten inorganic salts," Nature, Nature, vol. 542(7641), pages 328-331, February.
    7. Rong Wang & Kazuhito Hashimoto & Akira Fujishima & Makota Chikuni & Eiichi Kojima & Atsushi Kitamura & Mitsuhide Shimohigoshi & Toshiya Watanabe, 1997. "Light-induced amphiphilic surfaces," Nature, Nature, vol. 388(6641), pages 431-432, July.
    8. Hua Gui Yang & Cheng Hua Sun & Shi Zhang Qiao & Jin Zou & Gang Liu & Sean Campbell Smith & Hui Ming Cheng & Gao Qing Lu, 2008. "Anatase TiO2 single crystals with a large percentage of reactive facets," Nature, Nature, vol. 453(7195), pages 638-641, May.
    9. Shan Zhou & Jiahui Li & Jun Lu & Haihua Liu & Ji-Young Kim & Ahyoung Kim & Lehan Yao & Chang Liu & Chang Qian & Zachary D. Hood & Xiaoying Lin & Wenxiang Chen & Thomas E. Gage & Ilke Arslan & Alex Tra, 2022. "Chiral assemblies of pinwheel superlattices on substrates," Nature, Nature, vol. 612(7939), pages 259-265, December.
    10. Xiang Zhao & Xianhui Bu & Tao Wu & Shou-Tian Zheng & Le Wang & Pingyun Feng, 2013. "Selective anion exchange with nanogated isoreticular positive metal-organic frameworks," Nature Communications, Nature, vol. 4(1), pages 1-9, December.
    11. Theodore Hueckel & Glen M. Hocky & Jeremie Palacci & Stefano Sacanna, 2020. "Ionic solids from common colloids," Nature, Nature, vol. 580(7804), pages 487-490, April.
    12. Jinwei Xu & Xueli Zheng & Zhiping Feng & Zhiyi Lu & Zewen Zhang & William Huang & Yanbin Li & Djordje Vuckovic & Yuanqing Li & Sheng Dai & Guangxu Chen & Kecheng Wang & Hansen Wang & James K. Chen & W, 2021. "Organic wastewater treatment by a single-atom catalyst and electrolytically produced H2O2," Nature Sustainability, Nature, vol. 4(3), pages 233-241, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arkan, Foroogh & Izadyar, Mohammad, 2018. "Recent theoretical progress in the organic/metal-organic sensitizers as the free dyes, dye/TiO2 and dye/electrolyte systems; Structural modifications and solvent effects on their performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 609-655.
    2. Zedong Zhao & Rong Wang & Chengxin Peng & Wuji Chen & Tianqi Wu & Bo Hu & Weijun Weng & Ying Yao & Jiaxi Zeng & Zhihong Chen & Peiying Liu & Yicheng Liu & Guisheng Li & Jia Guo & Hongbin Lu & Zaiping , 2021. "Horizontally arranged zinc platelet electrodeposits modulated by fluorinated covalent organic framework film for high-rate and durable aqueous zinc ion batteries," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    3. Yan, Hu & Yuanhao, Wang & Hongxing, Yang, 2017. "TEOS/silane coupling agent composed double layers structure: A novel super-hydrophilic coating with controllable water contact angle value," Applied Energy, Elsevier, vol. 185(P2), pages 2209-2216.
    4. Jun Guo & Yulong Duan & Yunling Jia & Zelong Zhao & Xiaoqing Gao & Pai Liu & Fangfang Li & Hongli Chen & Yutong Ye & Yujiao Liu & Meiting Zhao & Zhiyong Tang & Yi Liu, 2024. "Biomimetic chiral hydrogen-bonded organic-inorganic frameworks," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Peixin Zhang & Lifeng Yang & Xing Liu & Jun Wang & Xian Suo & Liyuan Chen & Xili Cui & Huabin Xing, 2022. "Ultramicroporous material based parallel and extended paraffin nano-trap for benchmark olefin purification," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    6. Mariem Ferchichi & Laszlo Hegely & Peter Lang, 2021. "Decrease of energy demand of semi-batch distillation policies," Energy & Environment, , vol. 32(8), pages 1479-1503, December.
    7. Muhammad Abdul Qyyum & Yus Donald Chaniago & Wahid Ali & Hammad Saulat & Moonyong Lee, 2020. "Membrane-Assisted Removal of Hydrogen and Nitrogen from Synthetic Natural Gas for Energy-Efficient Liquefaction," Energies, MDPI, vol. 13(19), pages 1-18, September.
    8. Qi Huang & Baokai Xia & Ming Li & Hongxin Guan & Markus Antonietti & Sheng Chen, 2024. "Single-zinc vacancy unlocks high-rate H2O2 electrosynthesis from mixed dioxygen beyond Le Chatelier principle," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    9. Zhenggong Wang & Xiaofan Luo & Zejun Song & Kuan Lu & Shouwen Zhu & Yanshao Yang & Yatao Zhang & Wangxi Fang & Jian Jin, 2022. "Microporous polymer adsorptive membranes with high processing capacity for molecular separation," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    10. Bruno Franco & Lieven Clarisse & Martin Van Damme & Juliette Hadji-Lazaro & Cathy Clerbaux & Pierre-François Coheur, 2022. "Ethylene industrial emitters seen from space," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    11. Chaoran Dong & Yilong Yang & Xuemin Hu & Yoonjun Cho & Gyuyong Jang & Yanhui Ao & Luyang Wang & Jinyou Shen & Jong Hyeok Park & Kan Zhang, 2022. "Self-cycled photo-Fenton-like system based on an artificial leaf with a solar-to-H2O2 conversion efficiency of 1.46%," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    12. Jiménez-Calvo, Pablo & Caps, Valérie & Keller, Valérie, 2021. "Plasmonic Au-based junctions onto TiO2, gC3N4, and TiO2-gC3N4 systems for photocatalytic hydrogen production: Fundamentals and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    13. Lei Zhang & Zhe Chen & Zhenpeng Liu & Jun Bu & Wenxiu Ma & Chen Yan & Rui Bai & Jin Lin & Qiuyu Zhang & Junzhi Liu & Tao Wang & Jian Zhang, 2021. "Efficient electrocatalytic acetylene semihydrogenation by electron–rich metal sites in N–heterocyclic carbene metal complexes," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    14. Jinqiu Yuan & Xinda You & Niaz Ali Khan & Runlai Li & Runnan Zhang & Jianliang Shen & Li Cao & Mengying Long & Yanan Liu & Zijian Xu & Hong Wu & Zhongyi Jiang, 2022. "Photo-tailored heterocrystalline covalent organic framework membranes for organics separation," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    15. Qian Zhang & Bo Gao & Ling Zhang & Xiaopeng Liu & Jixiang Cui & Yijun Cao & Hongbo Zeng & Qun Xu & Xinwei Cui & Lei Jiang, 2023. "Anomalous water molecular gating from atomic-scale graphene capillaries for precise and ultrafast molecular sieving," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    16. Li, Zhenzi & Wang, Shijie & Wu, Jiaxing & Zhou, Wei, 2022. "Recent progress in defective TiO2 photocatalysts for energy and environmental applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    17. Peng Jiang & Ludan Zhang & Xiaolong Liu & Chenliang Ye & Peng Zhu & Ting Tan & Dingsheng Wang & Yuguang Wang, 2024. "Tuning oxidant and antioxidant activities of ceria by anchoring copper single-site for antibacterial application," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    18. Qingju Wang & Lifeng Yang & Tian Ke & Jianbo Hu & Xian Suo & Xili Cui & Huabin Xing, 2024. "Selective sorting of hexane isomers by anion-functionalized metal-organic frameworks with optimal energy regulation," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    19. Fan Cui & Sophie Marbach & Jeana Aojie Zheng & Miranda Holmes-Cerfon & David J. Pine, 2022. "Comprehensive view of microscopic interactions between DNA-coated colloids," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    20. Yunjia Jiang, & Yongqi Hu, & Binquan Luan, & Lingyao Wang, & Rajamani Krishna, & Haofei Ni, & Xin Hu & Yuanbin Zhang, 2023. "Benchmark single-step ethylene purification from ternary mixtures by a customized fluorinated anion-embedded MOF," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41053-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.