IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-20124-0.html
   My bibliography  Save this article

Programmed spatial organization of biomacromolecules into discrete, coacervate-based protocells

Author

Listed:
  • Wiggert J. Altenburg

    (Eindhoven University of Technology
    Eindhoven University of Technology)

  • N. Amy Yewdall

    (Eindhoven University of Technology
    Eindhoven University of Technology)

  • Daan F. M. Vervoort

    (Eindhoven University of Technology
    Eindhoven University of Technology)

  • Marleen H. M. E. Stevendaal

    (Eindhoven University of Technology
    Eindhoven University of Technology)

  • Alexander F. Mason

    (Eindhoven University of Technology
    Eindhoven University of Technology)

  • Jan C. M. Hest

    (Eindhoven University of Technology
    Eindhoven University of Technology
    Eindhoven University of Technology)

Abstract

The cell cytosol is crowded with high concentrations of many different biomacromolecules, which is difficult to mimic in bottom-up synthetic cell research and limits the functionality of existing protocellular platforms. There is thus a clear need for a general, biocompatible, and accessible tool to more accurately emulate this environment. Herein, we describe the development of a discrete, membrane-bound coacervate-based protocellular platform that utilizes the well-known binding motif between Ni2+-nitrilotriacetic acid and His-tagged proteins to exercise a high level of control over the loading of biologically relevant macromolecules. This platform can accrete proteins in a controlled, efficient, and benign manner, culminating in the enhancement of an encapsulated two-enzyme cascade and protease-mediated cargo secretion, highlighting the potency of this methodology. This versatile approach for programmed spatial organization of biologically relevant proteins expands the protocellular toolbox, and paves the way for the development of the next generation of complex yet well-regulated synthetic cells.

Suggested Citation

  • Wiggert J. Altenburg & N. Amy Yewdall & Daan F. M. Vervoort & Marleen H. M. E. Stevendaal & Alexander F. Mason & Jan C. M. Hest, 2020. "Programmed spatial organization of biomacromolecules into discrete, coacervate-based protocells," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-20124-0
    DOI: 10.1038/s41467-020-20124-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-20124-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-20124-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shoupeng Cao & Tsvetomir Ivanov & Julian Heuer & Calum T. J. Ferguson & Katharina Landfester & Lucas Caire da Silva, 2024. "Dipeptide coacervates as artificial membraneless organelles for bioorthogonal catalysis," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    2. Andrea Testa & Mirco Dindo & Aleksander A. Rebane & Babak Nasouri & Robert W. Style & Ramin Golestanian & Eric R. Dufresne & Paola Laurino, 2021. "Sustained enzymatic activity and flow in crowded protein droplets," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    3. Jiahua Wang & Manzar Abbas & Junyou Wang & Evan Spruijt, 2023. "Selective amide bond formation in redox-active coacervate protocells," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-20124-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.