IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-43879-8.html
   My bibliography  Save this article

Performance boost for bismuth telluride thermoelectric generator via barrier layer based on low Young’s modulus and particle sliding

Author

Listed:
  • Yuxin Sun

    (Harbin Institute of Technology)

  • Fengkai Guo

    (Harbin Institute of Technology)

  • Yan Feng

    (Northwestern Polytechnical University)

  • Chun Li

    (Harbin Institute of Technology)

  • Yongchun Zou

    (Harbin Institute of Technology)

  • Jinxuan Cheng

    (Harbin Institute of Technology)

  • Xingyan Dong

    (Harbin Institute of Technology)

  • Hao Wu

    (Harbin Institute of Technology)

  • Qian Zhang

    (Harbin Institute of Technology)

  • Weishu Liu

    (Southern University of Science and Technology)

  • Zihang Liu

    (Harbin Institute of Technology)

  • Wei Cai

    (Harbin Institute of Technology)

  • Zhifeng Ren

    (University of Houston)

  • Jiehe Sui

    (Harbin Institute of Technology)

Abstract

The lack of desirable diffusion barrier layers currently prohibits the long-term stable service of bismuth telluride thermoelectric devices in low-grade waste heat recovery. Here we propose a new design principle of barrier layers beyond the thermal expansion matching criterion. A titanium barrier layer with loose structure is optimized, in which the low Young’s modulus and particle sliding synergistically alleviates interfacial stress, while the TiTe2 reactant enables metallurgical bonding and ohmic contact between the barrier layer and the thermoelectric material, leading to a desirable interface characterized by high-thermostability, high-strength, and low-resistivity. Highly competitive conversion efficiency of 6.2% and power density of 0.51 W cm−2 are achieved for a module with leg length of 2 mm at the hot-side temperature of 523 K, and no degradation is observed following operation for 360 h, a record for stable service at this temperature, paving the way for its application in low-grade waste heat recovery.

Suggested Citation

  • Yuxin Sun & Fengkai Guo & Yan Feng & Chun Li & Yongchun Zou & Jinxuan Cheng & Xingyan Dong & Hao Wu & Qian Zhang & Weishu Liu & Zihang Liu & Wei Cai & Zhifeng Ren & Jiehe Sui, 2023. "Performance boost for bismuth telluride thermoelectric generator via barrier layer based on low Young’s modulus and particle sliding," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43879-8
    DOI: 10.1038/s41467-023-43879-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-43879-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-43879-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ruiheng Liu & Yunfei Xing & Jincheng Liao & Xugui Xia & Chao Wang & Chenxi Zhu & Fangfang Xu & Zhi-Gang Chen & Lidong Chen & Jian Huang & Shengqiang Bai, 2022. "Thermal-inert and ohmic-contact interface for high performance half-Heusler based thermoelectric generator," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Xu, Haowei & Zhang, Qiang & Yi, Longbing & Huang, Shaolin & Yang, Hao & Li, Yanan & Guo, Zhe & Hu, Haoyang & Sun, Peng & Tan, Xiaojian & Liu, Guo-qiang & Song, Kun & Jiang, Jun, 2022. "High performance of Bi2Te3-based thermoelectric generator owing to pressure in fabrication process," Applied Energy, Elsevier, vol. 326(C).
    3. Pingjun Ying & Ran He & Jun Mao & Qihao Zhang & Heiko Reith & Jiehe Sui & Zhifeng Ren & Kornelius Nielsch & Gabi Schierning, 2021. "Towards tellurium-free thermoelectric modules for power generation from low-grade heat," Nature Communications, Nature, vol. 12(1), pages 1-6, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sadeq Hooshmand Zaferani & Mehdi Jafarian & Daryoosh Vashaee & Reza Ghomashchi, 2021. "Thermal Management Systems and Waste Heat Recycling by Thermoelectric Generators—An Overview," Energies, MDPI, vol. 14(18), pages 1-21, September.
    2. Yang, Wei & Bao, Jingjing & Liu, Hongtao & Zhang, Jun & Guo, Lin, 2023. "Low-grade heat to hydrogen: Current technologies, challenges and prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    3. Jing-Wei Li & Zhijia Han & Jincheng Yu & Hua-Lu Zhuang & Haihua Hu & Bin Su & Hezhang Li & Yilin Jiang & Lu Chen & Weishu Liu & Qiang Zheng & Jing-Feng Li, 2023. "Wide-temperature-range thermoelectric n-type Mg3(Sb,Bi)2 with high average and peak zT values," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Zihang Liu & Weihong Gao & Hironori Oshima & Kazuo Nagase & Chul-Ho Lee & Takao Mori, 2022. "Maximizing the performance of n-type Mg3Bi2 based materials for room-temperature power generation and thermoelectric cooling," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Airan Li & Yuechu Wang & Yuzheng Li & Xinlei Yang & Pengfei Nan & Kai Liu & Binghui Ge & Chenguang Fu & Tiejun Zhu, 2024. "High performance magnesium-based plastic semiconductors for flexible thermoelectrics," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    6. Li Yin & Xiaofang Li & Xin Bao & Jinxuan Cheng & Chen Chen & Zongwei Zhang & Xingjun Liu & Feng Cao & Jun Mao & Qian Zhang, 2024. "CALPHAD accelerated design of advanced full-Zintl thermoelectric device," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    7. Yang, Wenlong & Zhu, WenChao & Du, Banghua & Wang, Han & Xu, Lamei & Xie, Changjun & Shi, Ying, 2023. "Power generation of annular thermoelectric generator with silicone polymer thermal conductive oil applied in automotive waste heat recovery," Energy, Elsevier, vol. 282(C).
    8. Min Liu & Xinyue Zhang & Shuxian Zhang & Yanzhong Pei, 2024. "Ag2Se as a tougher alternative to n-type Bi2Te3 thermoelectrics," Nature Communications, Nature, vol. 15(1), pages 1-6, December.
    9. Yanan Li & Hao Yang & Chuanbin Yu & Wenjie Zhou & Qiang Zhang & Haoyang Hu & Peng Sun & Jiehua Wu & Xiaojian Tan & Kun Song & Guoqiang Liu & Jun Jiang, 2024. "Measurement Error in Thermoelectric Generator Induced by Temperature Fluctuation," Energies, MDPI, vol. 17(5), pages 1-11, February.
    10. Huang, Shaolin & Yang, Hao & Li, Yanan & Guo, Zhe & Zhang, Qiang & Cai, Jianfeng & Wu, Jiehua & Tan, Xiaojian & Liu, Guoqiang & Song, Kun & Jiang, Jun, 2023. "Optimizing GeTe-based thermoelectric generator for low-grade heat recovery," Applied Energy, Elsevier, vol. 349(C).
    11. Tian, Tong & Wang, Xinyue & Liu, Yang & Yang, Xuan & Sun, Bo & Li, Ji, 2023. "Nano-engineering enabled heat pipe battery: A powerful heat transfer infrastructure with capability of power generation," Applied Energy, Elsevier, vol. 348(C).
    12. Jaeho Yoon & Hanhwi Jang & Min-Wook Oh & Thomas Hilberath & Frank Hollmann & Yeon Sik Jung & Chan Beum Park, 2022. "Heat-fueled enzymatic cascade for selective oxyfunctionalization of hydrocarbons," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    13. Yang, Wenlong & Jin, Chenchen & Zhu, Wenchao & Xie, Changjun & Huang, Liang & Li, Yang & Xiong, Binyu, 2024. "Innovative design for thermoelectric power generation: Two-stage thermoelectric generator with variable twist ratio twisted tapes optimizing maximum output," Applied Energy, Elsevier, vol. 363(C).
    14. Fahid Riaz & Fu Zhi Yam & Muhammad Abdul Qyyum & Muhammad Wakil Shahzad & Muhammad Farooq & Poh Seng Lee & Moonyong Lee, 2021. "Direct Analytical Modeling for Optimal, On-Design Performance of Ejector for Simulating Heat-Driven Systems," Energies, MDPI, vol. 14(10), pages 1-21, May.
    15. Tian, Yu & Ren, Guang-Kun & Wei, Zhijie & Zheng, Zhe & Deng, Shunjie & Ma, Li & Li, Yuansen & Zhou, Zhifang & Chen, Xiaohong & Shi, Yan & Lin, Yuan-Hua, 2024. "Advances of thermoelectric power generation for room temperature: Applications, devices, materials and beyond," Renewable Energy, Elsevier, vol. 226(C).
    16. Nie, Xianhua & Xue, Juan & Zhao, Li & Deng, Shuai & Xiong, Hanping, 2024. "New insight of thermodynamic cycle in thermoelectric power generation analyses: Literature review and perspectives," Energy, Elsevier, vol. 292(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43879-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.