IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v326y2022ics0306261922012168.html
   My bibliography  Save this article

High performance of Bi2Te3-based thermoelectric generator owing to pressure in fabrication process

Author

Listed:
  • Xu, Haowei
  • Zhang, Qiang
  • Yi, Longbing
  • Huang, Shaolin
  • Yang, Hao
  • Li, Yanan
  • Guo, Zhe
  • Hu, Haoyang
  • Sun, Peng
  • Tan, Xiaojian
  • Liu, Guo-qiang
  • Song, Kun
  • Jiang, Jun

Abstract

A Bi2Te3-based thermoelectric generator (TEG) is known to be the leading technology in low-temperature heat energy recovery. In its fabricating process, the thermoelectric (TE) materials should be heated over the melting temperature of tin solder, but the unmatched thermal expansion between p-type and n-type TE materials will lead to considerable interfacial resistivity, resulting in the sharp decrease of the output power and conversion efficiency. Here, we introduce the pressure to suppress interfacial resistance of Bi2Te3-based TEGs. The theoretical model governing the pressure and interfacial resistivity is built based on the equations of thermal-electric-elastic coupling, and the explicit expressions for maximum output power and conversion efficiency are derived when considering interfacial resistivity. With the guidance of theoretical and simulation results, the average interfacial resistivity of 10 μΩ·cm2 is measured in a Bi2Te3-based TEG, while the conversion efficiency is increased by 44% from the commercial devices. Besides, the stress caused by suitable pressure force is less than the allowable stress of Bi2Te3-based TE materials. These findings provide strong support for the fabrication of high-performance TEGs.

Suggested Citation

  • Xu, Haowei & Zhang, Qiang & Yi, Longbing & Huang, Shaolin & Yang, Hao & Li, Yanan & Guo, Zhe & Hu, Haoyang & Sun, Peng & Tan, Xiaojian & Liu, Guo-qiang & Song, Kun & Jiang, Jun, 2022. "High performance of Bi2Te3-based thermoelectric generator owing to pressure in fabrication process," Applied Energy, Elsevier, vol. 326(C).
  • Handle: RePEc:eee:appene:v:326:y:2022:i:c:s0306261922012168
    DOI: 10.1016/j.apenergy.2022.119959
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922012168
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.119959?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Patil, Dipak S. & Arakerimath, Rachayya R. & Walke, Pramod V., 2018. "Thermoelectric materials and heat exchangers for power generation – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 1-22.
    2. Zhonglin Bu & Xinyue Zhang & Yixin Hu & Zhiwei Chen & Siqi Lin & Wen Li & Chong Xiao & Yanzhong Pei, 2022. "A record thermoelectric efficiency in tellurium-free modules for low-grade waste heat recovery," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. Anthony P. Straub & Ngai Yin Yip & Shihong Lin & Jongho Lee & Menachem Elimelech, 2016. "Harvesting low-grade heat energy using thermo-osmotic vapour transport through nanoporous membranes," Nature Energy, Nature, vol. 1(7), pages 1-6, July.
    4. Mamur, Hayati & Bhuiyan, M.R.A. & Korkmaz, Fatih & Nil, Mustafa, 2018. "A review on bismuth telluride (Bi2Te3) nanostructure for thermoelectric applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4159-4169.
    5. Gou, Xiaolong & Xiao, Heng & Yang, Suwen, 2010. "Modeling, experimental study and optimization on low-temperature waste heat thermoelectric generator system," Applied Energy, Elsevier, vol. 87(10), pages 3131-3136, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yanan Li & Hao Yang & Chuanbin Yu & Wenjie Zhou & Qiang Zhang & Haoyang Hu & Peng Sun & Jiehua Wu & Xiaojian Tan & Kun Song & Guoqiang Liu & Jun Jiang, 2024. "Measurement Error in Thermoelectric Generator Induced by Temperature Fluctuation," Energies, MDPI, vol. 17(5), pages 1-11, February.
    2. Yang, Wenlong & Zhu, WenChao & Du, Banghua & Wang, Han & Xu, Lamei & Xie, Changjun & Shi, Ying, 2023. "Power generation of annular thermoelectric generator with silicone polymer thermal conductive oil applied in automotive waste heat recovery," Energy, Elsevier, vol. 282(C).
    3. Huang, Shaolin & Yang, Hao & Li, Yanan & Guo, Zhe & Zhang, Qiang & Cai, Jianfeng & Wu, Jiehua & Tan, Xiaojian & Liu, Guoqiang & Song, Kun & Jiang, Jun, 2023. "Optimizing GeTe-based thermoelectric generator for low-grade heat recovery," Applied Energy, Elsevier, vol. 349(C).
    4. Yuxin Sun & Fengkai Guo & Yan Feng & Chun Li & Yongchun Zou & Jinxuan Cheng & Xingyan Dong & Hao Wu & Qian Zhang & Weishu Liu & Zihang Liu & Wei Cai & Zhifeng Ren & Jiehe Sui, 2023. "Performance boost for bismuth telluride thermoelectric generator via barrier layer based on low Young’s modulus and particle sliding," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tian, Tong & Wang, Xinyue & Liu, Yang & Yang, Xuan & Sun, Bo & Li, Ji, 2023. "Nano-engineering enabled heat pipe battery: A powerful heat transfer infrastructure with capability of power generation," Applied Energy, Elsevier, vol. 348(C).
    2. Yang, Wei & Bao, Jingjing & Liu, Hongtao & Zhang, Jun & Guo, Lin, 2023. "Low-grade heat to hydrogen: Current technologies, challenges and prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    3. Cui, Tengfei & Xuan, Yimin & Yin, Ershuai & Li, Qiang & Li, Dianhong, 2017. "Experimental investigation on potential of a concentrated photovoltaic-thermoelectric system with phase change materials," Energy, Elsevier, vol. 122(C), pages 94-102.
    4. Cai, Yuhao & Qian, Xin & Su, Ruihang & Jia, Xiongjie & Ying, Jinhui & Zhao, Tianshou & Jiang, Haoran, 2024. "Thermo-electrochemical modeling of thermally regenerative flow batteries," Applied Energy, Elsevier, vol. 355(C).
    5. Shen, Rong & Gou, Xiaolong & Xu, Haoyu & Qiu, Kuanrong, 2017. "Dynamic performance analysis of a cascaded thermoelectric generator," Applied Energy, Elsevier, vol. 203(C), pages 808-815.
    6. Xiaowen Sun & Yuedong Yan & Man Kang & Weiyun Zhao & Kaifen Yan & He Wang & Ranran Li & Shijie Zhao & Xiaoshe Hua & Boyi Wang & Weifeng Zhang & Yuan Deng, 2024. "General strategy for developing thick-film micro-thermoelectric coolers from material fabrication to device integration," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    7. Zaher, M.H. & Abdelsalam, M.Y. & Cotton, J.S., 2020. "Study of the effects of axial conduction on the performance of thermoelectric generators integrated in a heat exchanger for waste heat recovery applications," Applied Energy, Elsevier, vol. 261(C).
    8. Yin, Ershuai & Li, Qiang & Xuan, Yimin, 2018. "Optimal design method for concentrating photovoltaic-thermoelectric hybrid system," Applied Energy, Elsevier, vol. 226(C), pages 320-329.
    9. Long, Rui & Zhao, Yanan & Li, Mingliang & Pan, Yao & Liu, Zhichun & Liu, Wei, 2021. "Evaluations of adsorbents and salt-methanol solutions for low-grade heat driven osmotic heat engines," Energy, Elsevier, vol. 229(C).
    10. Ding, L.C. & Akbarzadeh, A. & Date, Abhijit, 2016. "Electric power generation via plate type power generation unit from solar pond using thermoelectric cells," Applied Energy, Elsevier, vol. 183(C), pages 61-76.
    11. Song, Kun & Yin, Deshun & Song, Haopeng & Schiavone, Peter & Wu, Xun & Yuan, Lili, 2022. "Seeking high energy conversion efficiency in a fully temperature-dependent thermoelectric medium," Energy, Elsevier, vol. 239(PE).
    12. Lyudmyla Vikhor & Maxim Kotsur, 2023. "Evaluation of Efficiency for Miniscale Thermoelectric Converter under the Influence of Electrical and Thermal Resistance of Contacts," Energies, MDPI, vol. 16(10), pages 1-22, May.
    13. Lee, HoSung, 2013. "Optimal design of thermoelectric devices with dimensional analysis," Applied Energy, Elsevier, vol. 106(C), pages 79-88.
    14. Gou, Xiaolong & Ping, Huifeng & Ou, Qiang & Xiao, Heng & Qing, Shaowei, 2015. "A novel thermoelectric generation system with thermal switch," Applied Energy, Elsevier, vol. 160(C), pages 843-852.
    15. Mustafa, K.F. & Abdullah, S. & Abdullah, M.Z. & Sopian, K. & Ismail, A.K., 2015. "Experimental investigation of the performance of a liquid fuel-fired porous burner operating on kerosene-vegetable cooking oil (VCO) blends for micro-cogeneration of thermoelectric power," Renewable Energy, Elsevier, vol. 74(C), pages 505-516.
    16. Sun, Henan & Ge, Ya & Liu, Wei & Liu, Zhichun, 2019. "Geometric optimization of two-stage thermoelectric generator using genetic algorithms and thermodynamic analysis," Energy, Elsevier, vol. 171(C), pages 37-48.
    17. Mai, Van-Phung & Yang, Ruey-Jen, 2020. "Boosting power generation from salinity gradient on high-density nanoporous membrane using thermal effect," Applied Energy, Elsevier, vol. 274(C).
    18. Zhu, Yuxiao & Newbrook, Daniel W. & Dai, Peng & de Groot, C.H. Kees & Huang, Ruomeng, 2022. "Artificial neural network enabled accurate geometrical design and optimisation of thermoelectric generator," Applied Energy, Elsevier, vol. 305(C).
    19. Kwan, Trevor Hocksun & Wu, Xiaofeng & Yao, Qinghe, 2018. "Multi-objective genetic optimization of the thermoelectric system for thermal management of proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 217(C), pages 314-327.
    20. Jian Li & Qingfeng Song & Ruiheng Liu & Hongliang Dong & Qihao Zhang & Xun Shi & Shengqiang Bai & Lidong Chen, 2022. "Thermoelectric Performance Optimization of n-Type La 3− x Sm x Te 4 /Ni Composites via Sm Doping," Energies, MDPI, vol. 15(7), pages 1-9, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:326:y:2022:i:c:s0306261922012168. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.