IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v349y2023ics0306261923009480.html
   My bibliography  Save this article

Optimizing GeTe-based thermoelectric generator for low-grade heat recovery

Author

Listed:
  • Huang, Shaolin
  • Yang, Hao
  • Li, Yanan
  • Guo, Zhe
  • Zhang, Qiang
  • Cai, Jianfeng
  • Wu, Jiehua
  • Tan, Xiaojian
  • Liu, Guoqiang
  • Song, Kun
  • Jiang, Jun

Abstract

GeTe-based thermoelectric (TE) materials have been of great interest in the field of low-grade heat recovery due to their increasing performance near room temperature. To promote the application of GeTe-based materials, we analyze the GeTe-based thermoelectric generator (TEG) from materials to structures through theoretical and experimental methods. Since a TEG generally contains both p-type and n-type materials, we calculate the n-type material parameters suitable for the p-type GeTe, and improve the compatibility between p-type and n-type materials by adjusting the ratio of cross-sectional areas. Meanwhile, the height of TE legs is designed to minimize the impact of interfacial resistivity, while the suitable temperature loading is determined to achieve higher output power and conversion efficiency. Based on theoretical guidance, the conversion efficiency is improved by more than 23% by adjusting the ratio of cross-sectional areas; a conversion efficiency of 6.24% under the temperature gradient of 300 K is realized, which has up to 80% improvement from the conventional TEGs with the advantages of low cost, high reliability and stable service performance. This study provides the theoretical basis and guidance for optimizing GeTe-based TEG in the application of low-grade heat recovery.

Suggested Citation

  • Huang, Shaolin & Yang, Hao & Li, Yanan & Guo, Zhe & Zhang, Qiang & Cai, Jianfeng & Wu, Jiehua & Tan, Xiaojian & Liu, Guoqiang & Song, Kun & Jiang, Jun, 2023. "Optimizing GeTe-based thermoelectric generator for low-grade heat recovery," Applied Energy, Elsevier, vol. 349(C).
  • Handle: RePEc:eee:appene:v:349:y:2023:i:c:s0306261923009480
    DOI: 10.1016/j.apenergy.2023.121584
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923009480
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.121584?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chenguang Fu & Shengqiang Bai & Yintu Liu & Yunshan Tang & Lidong Chen & Xinbing Zhao & Tiejun Zhu, 2015. "Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials," Nature Communications, Nature, vol. 6(1), pages 1-7, November.
    2. Xu, Haowei & Zhang, Qiang & Yi, Longbing & Huang, Shaolin & Yang, Hao & Li, Yanan & Guo, Zhe & Hu, Haoyang & Sun, Peng & Tan, Xiaojian & Liu, Guo-qiang & Song, Kun & Jiang, Jun, 2022. "High performance of Bi2Te3-based thermoelectric generator owing to pressure in fabrication process," Applied Energy, Elsevier, vol. 326(C).
    3. Song, Kun & Yin, Deshun & Song, Haopeng & Schiavone, Peter & Wu, Xun & Yuan, Lili, 2022. "Seeking high energy conversion efficiency in a fully temperature-dependent thermoelectric medium," Energy, Elsevier, vol. 239(PE).
    4. Yilin Jiang & Jinfeng Dong & Hua-Lu Zhuang & Jincheng Yu & Bin Su & Hezhang Li & Jun Pei & Fu-Hua Sun & Min Zhou & Haihua Hu & Jing-Wei Li & Zhanran Han & Bo-Ping Zhang & Takao Mori & Jing-Feng Li, 2022. "Evolution of defect structures leading to high ZT in GeTe-based thermoelectric materials," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. He, Wei & Zhang, Gan & Zhang, Xingxing & Ji, Jie & Li, Guiqiang & Zhao, Xudong, 2015. "Recent development and application of thermoelectric generator and cooler," Applied Energy, Elsevier, vol. 143(C), pages 1-25.
    6. Li-Dong Zhao & Shih-Han Lo & Yongsheng Zhang & Hui Sun & Gangjian Tan & Ctirad Uher & C. Wolverton & Vinayak P. Dravid & Mercouri G. Kanatzidis, 2014. "Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals," Nature, Nature, vol. 508(7496), pages 373-377, April.
    7. Massaguer, Eduard & Massaguer, Albert & Montoro, Lino & Gonzalez, J.R., 2015. "Modeling analysis of longitudinal thermoelectric energy harvester in low temperature waste heat recovery applications," Applied Energy, Elsevier, vol. 140(C), pages 184-195.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yanan Li & Hao Yang & Chuanbin Yu & Wenjie Zhou & Qiang Zhang & Haoyang Hu & Peng Sun & Jiehua Wu & Xiaojian Tan & Kun Song & Guoqiang Liu & Jun Jiang, 2024. "Measurement Error in Thermoelectric Generator Induced by Temperature Fluctuation," Energies, MDPI, vol. 17(5), pages 1-11, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ding, L.C. & Akbarzadeh, A. & Date, Abhijit, 2016. "Electric power generation via plate type power generation unit from solar pond using thermoelectric cells," Applied Energy, Elsevier, vol. 183(C), pages 61-76.
    2. Liu, Di & Zhao, Fu-Yun & Yang, Hongxing & Tang, Guang-Fa, 2015. "Theoretical and experimental investigations of thermoelectric heating system with multiple ventilation channels," Applied Energy, Elsevier, vol. 159(C), pages 458-468.
    3. Lv, Hao & Wang, Xiao-Dong & Wang, Tian-Hu & Cheng, Chin-Hsiang, 2016. "Improvement of transient supercooling of thermoelectric coolers through variable semiconductor cross-section," Applied Energy, Elsevier, vol. 164(C), pages 501-508.
    4. Eom, Yoomin & Wijethunge, Dimuthu & Park, Hwanjoo & Park, Sang Hyun & Kim, Woochul, 2017. "Flexible thermoelectric power generation system based on rigid inorganic bulk materials," Applied Energy, Elsevier, vol. 206(C), pages 649-656.
    5. Lv, Hao & Wang, Xiao-Dong & Meng, Jing-Hui & Wang, Tian-Hu & Yan, Wei-Mon, 2016. "Enhancement of maximum temperature drop across thermoelectric cooler through two-stage design and transient supercooling effect," Applied Energy, Elsevier, vol. 175(C), pages 285-292.
    6. Erturun, Ugur & Erermis, Kaan & Mossi, Karla, 2015. "Influence of leg sizing and spacing on power generation and thermal stresses of thermoelectric devices," Applied Energy, Elsevier, vol. 159(C), pages 19-27.
    7. Lineykin, Simon & Maslah, Kareem & Kuperman, Alon, 2020. "Manufacturer-data-only-based modeling and optimized design of thermoelectric harvesters operating at low temperature gradients," Energy, Elsevier, vol. 213(C).
    8. Twaha, Ssennoga & Zhu, Jie & Yan, Yuying & Li, Bo, 2016. "A comprehensive review of thermoelectric technology: Materials, applications, modelling and performance improvement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 698-726.
    9. Wu, Yongjia & Yang, Jihui & Chen, Shikui & Zuo, Lei, 2018. "Thermo-element geometry optimization for high thermoelectric efficiency," Energy, Elsevier, vol. 147(C), pages 672-680.
    10. Zhu, Wei & Tu, Yubin & Deng, Yuan, 2018. "Multi-parameter optimization design of thermoelectric harvester based on phase change material for space generation," Applied Energy, Elsevier, vol. 228(C), pages 873-880.
    11. Tu, Yubin & Zhu, Wei & Lu, Tianqi & Deng, Yuan, 2017. "A novel thermoelectric harvester based on high-performance phase change material for space application," Applied Energy, Elsevier, vol. 206(C), pages 1194-1202.
    12. Cui, Tengfei & Xuan, Yimin & Yin, Ershuai & Li, Qiang & Li, Dianhong, 2017. "Experimental investigation on potential of a concentrated photovoltaic-thermoelectric system with phase change materials," Energy, Elsevier, vol. 122(C), pages 94-102.
    13. Selcuk Bulat & Erdal Büyükbicakci & Mustafa Erkovan, 2024. "Efficiency Enhancement in Photovoltaic–Thermoelectric Hybrid Systems through Cooling Strategies," Energies, MDPI, vol. 17(2), pages 1-12, January.
    14. Selimefendigil, Fatih & Öztop, Hakan F., 2020. "Identification of pulsating flow effects with CNT nanoparticles on the performance enhancements of thermoelectric generator (TEG) module in renewable energy applications," Renewable Energy, Elsevier, vol. 162(C), pages 1076-1086.
    15. Rui Liu & Guangkun Ren & Xing Tan & Yuanhua Lin & Cewen Nan, 2016. "Enhanced Thermoelectric Properties of Cu 3 SbSe 3 -Based Composites with Inclusion Phases," Energies, MDPI, vol. 9(10), pages 1-7, October.
    16. Rasel, Mohammad Sala Uddin & Park, Jae-Yeong, 2017. "A sandpaper assisted micro-structured polydimethylsiloxane fabrication for human skin based triboelectric energy harvesting application," Applied Energy, Elsevier, vol. 206(C), pages 150-158.
    17. Yihua Zhang & Guyang Peng & Shuankui Li & Haijun Wu & Kaidong Chen & Jiandong Wang & Zhihao Zhao & Tu Lyu & Yuan Yu & Chaohua Zhang & Yang Zhang & Chuansheng Ma & Shengwu Guo & Xiangdong Ding & Jun Su, 2024. "Phase interface engineering enables state-of-the-art half-Heusler thermoelectrics," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    18. Shen, Rong & Gou, Xiaolong & Xu, Haoyu & Qiu, Kuanrong, 2017. "Dynamic performance analysis of a cascaded thermoelectric generator," Applied Energy, Elsevier, vol. 203(C), pages 808-815.
    19. Duan, Mengfan & Sun, Hongli & Lin, Borong & Wu, Yifan, 2021. "Evaluation on the applicability of thermoelectric air cooling systems for buildings with thermoelectric material optimization," Energy, Elsevier, vol. 221(C).
    20. Yin, Ershuai & Li, Qiang & Xuan, Yimin, 2018. "Optimal design method for concentrating photovoltaic-thermoelectric hybrid system," Applied Energy, Elsevier, vol. 226(C), pages 320-329.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:349:y:2023:i:c:s0306261923009480. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.