IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-43228-9.html
   My bibliography  Save this article

Wide-temperature-range thermoelectric n-type Mg3(Sb,Bi)2 with high average and peak zT values

Author

Listed:
  • Jing-Wei Li

    (Tsinghua University)

  • Zhijia Han

    (Southern University of Science and Technology)

  • Jincheng Yu

    (Tsinghua University)

  • Hua-Lu Zhuang

    (Tsinghua University)

  • Haihua Hu

    (Tsinghua University)

  • Bin Su

    (Tsinghua University)

  • Hezhang Li

    (Tsinghua University)

  • Yilin Jiang

    (Tsinghua University)

  • Lu Chen

    (Tsinghua University)

  • Weishu Liu

    (Southern University of Science and Technology)

  • Qiang Zheng

    (National Centre for Nanoscience and Technology)

  • Jing-Feng Li

    (Tsinghua University)

Abstract

Mg3(Sb,Bi)2 is a promising thermoelectric material suited for electronic cooling, but there is still room to optimize its low-temperature performance. This work realizes >200% enhancement in room-temperature zT by incorporating metallic inclusions (Nb or Ta) into the Mg3(Sb,Bi)2-based matrix. The electrical conductivity is boosted in the range of 300–450 K, whereas the corresponding Seebeck coefficients remain unchanged, leading to an exceptionally high room-temperature power factor >30 μW cm−1 K−2; such an unusual effect originates mainly from the modified interfacial barriers. The reduced interfacial barriers are conducive to carrier transport at low and high temperatures. Furthermore, benefiting from the reduced lattice thermal conductivity, a record-high average zT > 1.5 and a maximum zT of 2.04 at 798 K are achieved, resulting in a high thermoelectric conversion efficiency of 15%. This work demonstrates an efficient nanocomposite strategy to enhance the wide-temperature-range thermoelectric performance of n-type Mg3(Sb,Bi)2, broadening their potential for practical applications.

Suggested Citation

  • Jing-Wei Li & Zhijia Han & Jincheng Yu & Hua-Lu Zhuang & Haihua Hu & Bin Su & Hezhang Li & Yilin Jiang & Lu Chen & Weishu Liu & Qiang Zheng & Jing-Feng Li, 2023. "Wide-temperature-range thermoelectric n-type Mg3(Sb,Bi)2 with high average and peak zT values," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43228-9
    DOI: 10.1038/s41467-023-43228-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-43228-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-43228-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wenyu Zhao & Zhiyuan Liu & Zhigang Sun & Qingjie Zhang & Ping Wei & Xin Mu & Hongyu Zhou & Cuncheng Li & Shifang Ma & Danqi He & Pengxia Ji & Wanting Zhu & Xiaolei Nie & Xianli Su & Xinfeng Tang & Bao, 2017. "Correction: Corrigendum: Superparamagnetic enhancement of thermoelectric performance," Nature, Nature, vol. 551(7680), pages 398-398, November.
    2. Wenyu Zhao & Zhiyuan Liu & Zhigang Sun & Qingjie Zhang & Ping Wei & Xin Mu & Hongyu Zhou & Cuncheng Li & Shifang Ma & Danqi He & Pengxia Ji & Wanting Zhu & Xiaolei Nie & Xianli Su & Xinfeng Tang & Bao, 2017. "Superparamagnetic enhancement of thermoelectric performance," Nature, Nature, vol. 549(7671), pages 247-251, September.
    3. Jiawei Zhang & Lirong Song & Steffen Hindborg Pedersen & Hao Yin & Le Thanh Hung & Bo Brummerstedt Iversen, 2017. "Discovery of high-performance low-cost n-type Mg3Sb2-based thermoelectric materials with multi-valley conduction bands," Nature Communications, Nature, vol. 8(1), pages 1-8, April.
    4. Yanzhong Pei & Xiaoya Shi & Aaron LaLonde & Heng Wang & Lidong Chen & G. Jeffrey Snyder, 2011. "Convergence of electronic bands for high performance bulk thermoelectrics," Nature, Nature, vol. 473(7345), pages 66-69, May.
    5. Pingjun Ying & Ran He & Jun Mao & Qihao Zhang & Heiko Reith & Jiehe Sui & Zhifeng Ren & Kornelius Nielsch & Gabi Schierning, 2021. "Towards tellurium-free thermoelectric modules for power generation from low-grade heat," Nature Communications, Nature, vol. 12(1), pages 1-6, December.
    6. Kanishka Biswas & Jiaqing He & Ivan D. Blum & Chun-I Wu & Timothy P. Hogan & David N. Seidman & Vinayak P. Dravid & Mercouri G. Kanatzidis, 2012. "High-performance bulk thermoelectrics with all-scale hierarchical architectures," Nature, Nature, vol. 489(7416), pages 414-418, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jingdan Lei & Kunpeng Zhao & Jincheng Liao & Shiqi Yang & Ziming Zhang & Tian-Ran Wei & Pengfei Qiu & Min Zhu & Lidong Chen & Xun Shi, 2024. "Approaching crystal’s limit of thermoelectrics by nano-sintering-aid at grain boundaries," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Longquan Wang & Wenhao Zhang & Song Yi Back & Naoyuki Kawamoto & Duy Hieu Nguyen & Takao Mori, 2024. "High-performance Mg3Sb2-based thermoelectrics with reduced structural disorder and microstructure evolution," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zihang Liu & Weihong Gao & Hironori Oshima & Kazuo Nagase & Chul-Ho Lee & Takao Mori, 2022. "Maximizing the performance of n-type Mg3Bi2 based materials for room-temperature power generation and thermoelectric cooling," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Yaru Gong & Wei Dou & Bochen Lu & Xuemei Zhang & He Zhu & Pan Ying & Qingtang Zhang & Yuqi Liu & Yanan Li & Xinqi Huang & Muhammad Faisal Iqbal & Shihua Zhang & Di Li & Yongsheng Zhang & Haijun Wu & G, 2024. "Divacancy and resonance level enables high thermoelectric performance in n-type SnSe polycrystals," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Nie, Xianhua & Xue, Juan & Zhao, Li & Deng, Shuai & Xiong, Hanping, 2024. "New insight of thermodynamic cycle in thermoelectric power generation analyses: Literature review and perspectives," Energy, Elsevier, vol. 292(C).
    4. Ni, Dan & Song, Haijun & Chen, Yuanxun & Cai, Kefeng, 2019. "Free-standing highly conducting PEDOT films for flexible thermoelectric generator," Energy, Elsevier, vol. 170(C), pages 53-61.
    5. Terry Hendricks & Thierry Caillat & Takao Mori, 2022. "Keynote Review of Latest Advances in Thermoelectric Generation Materials, Devices, and Technologies 2022," Energies, MDPI, vol. 15(19), pages 1-35, October.
    6. Yingcai Zhu & Dongyang Wang & Tao Hong & Lei Hu & Toshiaki Ina & Shaoping Zhan & Bingchao Qin & Haonan Shi & Lizhong Su & Xiang Gao & Li-Dong Zhao, 2022. "Multiple valence bands convergence and strong phonon scattering lead to high thermoelectric performance in p-type PbSe," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    7. Yilin Jiang & Jinfeng Dong & Hua-Lu Zhuang & Jincheng Yu & Bin Su & Hezhang Li & Jun Pei & Fu-Hua Sun & Min Zhou & Haihua Hu & Jing-Wei Li & Zhanran Han & Bo-Ping Zhang & Takao Mori & Jing-Feng Li, 2022. "Evolution of defect structures leading to high ZT in GeTe-based thermoelectric materials," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    8. Airan Li & Yuechu Wang & Yuzheng Li & Xinlei Yang & Pengfei Nan & Kai Liu & Binghui Ge & Chenguang Fu & Tiejun Zhu, 2024. "High performance magnesium-based plastic semiconductors for flexible thermoelectrics," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    9. Lei Miao & Sijing Zhu & Chengyan Liu & Jie Gao & Zhongwei Zhang & Ying Peng & Jun-Liang Chen & Yangfan Gao & Jisheng Liang & Takao Mori, 2024. "Comfortable wearable thermoelectric generator with high output power," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    10. Nan Chen & Hangtian Zhu & Guodong Li & Zhen Fan & Xiaofan Zhang & Jiawei Yang & Tianbo Lu & Qiulin Liu & Xiaowei Wu & Yuan Yao & Youguo Shi & Huaizhou Zhao, 2023. "Improved figure of merit (z) at low temperatures for superior thermoelectric cooling in Mg3(Bi,Sb)2," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    11. Ruofan Du & Yuzhu Wang & Mo Cheng & Peng Wang & Hui Li & Wang Feng & Luying Song & Jianping Shi & Jun He, 2022. "Two-dimensional multiferroic material of metallic p-doped SnSe," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    12. Min Liu & Xinyue Zhang & Shuxian Zhang & Yanzhong Pei, 2024. "Ag2Se as a tougher alternative to n-type Bi2Te3 thermoelectrics," Nature Communications, Nature, vol. 15(1), pages 1-6, December.
    13. Yong Yu & Xiao Xu & Yan Wang & Baohai Jia & Shan Huang & Xiaobin Qiang & Bin Zhu & Peijian Lin & Binbin Jiang & Shixuan Liu & Xia Qi & Kefan Pan & Di Wu & Haizhou Lu & Michel Bosman & Stephen J. Penny, 2022. "Tunable quantum gaps to decouple carrier and phonon transport leading to high-performance thermoelectrics," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    14. Liu, Xinxin & Wang, Ke & Shen, Zuguo, 2024. "A novel strategy of inserting radiation shields to enhance the performance of thermoelectric generator systems for industrial high-temperature heat recovery," Energy, Elsevier, vol. 301(C).
    15. Bai, Shengxi & Liu, Chunhua, 2021. "Overview of energy harvesting and emission reduction technologies in hybrid electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    16. Decheng An & Senhao Zhang & Xin Zhai & Wutao Yang & Riga Wu & Huaide Zhang & Wenhao Fan & Wenxian Wang & Shaoping Chen & Oana Cojocaru-Mirédin & Xian-Ming Zhang & Matthias Wuttig & Yuan Yu, 2024. "Metavalently bonded tellurides: the essence of improved thermoelectric performance in elemental Te," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    17. Zhifang Zhou & Yi Huang & Bin Wei & Yueyang Yang & Dehong Yu & Yunpeng Zheng & Dongsheng He & Wenyu Zhang & Mingchu Zou & Jin-Le Lan & Jiaqing He & Ce-Wen Nan & Yuan-Hua Lin, 2023. "Compositing effects for high thermoelectric performance of Cu2Se-based materials," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    18. Song Lv & Zuoqin Qian & Dengyun Hu & Xiaoyuan Li & Wei He, 2020. "A Comprehensive Review of Strategies and Approaches for Enhancing the Performance of Thermoelectric Module," Energies, MDPI, vol. 13(12), pages 1-24, June.
    19. Dianta Ginting & Chan-Chieh Lin & Jong-Soo Rhyee, 2019. "Synergetic Approach for Superior Thermoelectric Performance in PbTe-PbSe-PbS Quaternary Alloys and Composites," Energies, MDPI, vol. 13(1), pages 1-29, December.
    20. Eom, Yoomin & Wijethunge, Dimuthu & Park, Hwanjoo & Park, Sang Hyun & Kim, Woochul, 2017. "Flexible thermoelectric power generation system based on rigid inorganic bulk materials," Applied Energy, Elsevier, vol. 206(C), pages 649-656.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43228-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.