IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-35290-6.html
   My bibliography  Save this article

Thermal-inert and ohmic-contact interface for high performance half-Heusler based thermoelectric generator

Author

Listed:
  • Ruiheng Liu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences
    Chinese Academy of Sciences)

  • Yunfei Xing

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Jincheng Liao

    (Chinese Academy of Sciences)

  • Xugui Xia

    (Chinese Academy of Sciences)

  • Chao Wang

    (Chinese Academy of Sciences)

  • Chenxi Zhu

    (Chinese Academy of Sciences)

  • Fangfang Xu

    (Chinese Academy of Sciences)

  • Zhi-Gang Chen

    (Queensland University of Technology)

  • Lidong Chen

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Jian Huang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Shengqiang Bai

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

Abstract

Unsatisfied electrode bonding in half-Heusler devices renders thermal damage and large efficiency loss, which limits their practical service at high temperatures. Here, we develop a thermodynamic strategy to screen barrier layer elements. Theoretically, we found that the interface between VIIB elements and half-Heuslers possesses near-zero interfacial reaction energy and large atomic diffusion barrier. Experimentally, such an interphase proves to be the atomic direct bonding and has high thermal stability at 1073 K, leading to ideal ohmic contact. Such thermally inert and ohmic contact interface enable modules stably to work at elevated temperature up to 1100 K, which releases the peak performance of half-Heuslers and in turn boosts the energy conversion efficiencies to the records of 11.1% and 13.3% for half-Heusler single-stage and half-Heusler/Bi2Te3 segmented modules. This design strategy provides a feasible solution for the high-temperature half-Heusler generators and gives enlightenment for other package interconnection design of electronic devices.

Suggested Citation

  • Ruiheng Liu & Yunfei Xing & Jincheng Liao & Xugui Xia & Chao Wang & Chenxi Zhu & Fangfang Xu & Zhi-Gang Chen & Lidong Chen & Jian Huang & Shengqiang Bai, 2022. "Thermal-inert and ohmic-contact interface for high performance half-Heusler based thermoelectric generator," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35290-6
    DOI: 10.1038/s41467-022-35290-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-35290-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-35290-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jing Chu & Jian Huang & Ruiheng Liu & Jincheng Liao & Xugui Xia & Qihao Zhang & Chao Wang & Ming Gu & Shengqiang Bai & Xun Shi & Lidong Chen, 2020. "Electrode interface optimization advances conversion efficiency and stability of thermoelectric devices," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li Yin & Xiaofang Li & Xin Bao & Jinxuan Cheng & Chen Chen & Zongwei Zhang & Xingjun Liu & Feng Cao & Jun Mao & Qian Zhang, 2024. "CALPHAD accelerated design of advanced full-Zintl thermoelectric device," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Yuntian Fu & Xin Ai & Zhongliang Hu & Shuhan Zhao & Xiaofang Lu & Jian Huang & Aibin Huang & Lianjun Wang & Qihao Zhang & Wan Jiang, 2024. "Interface kinetic manipulation enabling efficient and reliable Mg3Sb2 thermoelectrics," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Yuxin Sun & Fengkai Guo & Yan Feng & Chun Li & Yongchun Zou & Jinxuan Cheng & Xingyan Dong & Hao Wu & Qian Zhang & Weishu Liu & Zihang Liu & Wei Cai & Zhifeng Ren & Jiehe Sui, 2023. "Performance boost for bismuth telluride thermoelectric generator via barrier layer based on low Young’s modulus and particle sliding," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li Yin & Xiaofang Li & Xin Bao & Jinxuan Cheng & Chen Chen & Zongwei Zhang & Xingjun Liu & Feng Cao & Jun Mao & Qian Zhang, 2024. "CALPHAD accelerated design of advanced full-Zintl thermoelectric device," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Kim, Seonggon & Ko, Yunmo & Lee, Geun Jeong & Lee, Jae Won & Xu, Ronghuan & Ahn, Hyungseop & Kang, Yong Tae, 2023. "Sustainable energy harvesting from post-combustion CO2 capture using amine-functionalized solvents," Energy, Elsevier, vol. 267(C).
    3. Peng Li & Pengfei Qiu & Qing Xu & Jun Luo & Yifei Xiong & Jie Xiao & Niraj Aryal & Qiang Li & Lidong Chen & Xun Shi, 2022. "Colossal Nernst power factor in topological semimetal NbSb2," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    4. Jing, Hang & Xiang, Qingpei & Ze, Rende & Chen, Xiaoxi & Li, Jing & Liao, Jincheng & Bai, Shengqiang, 2023. "A skutterudite thermoelectric module with high aspect ratio applied to milliwatt radioisotope thermoelectric generator," Applied Energy, Elsevier, vol. 350(C).
    5. Yuntian Fu & Xin Ai & Zhongliang Hu & Shuhan Zhao & Xiaofang Lu & Jian Huang & Aibin Huang & Lianjun Wang & Qihao Zhang & Wan Jiang, 2024. "Interface kinetic manipulation enabling efficient and reliable Mg3Sb2 thermoelectrics," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35290-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.