IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-42590-y.html
   My bibliography  Save this article

Polarization-driven reversible actuation in a photo-responsive polymer composite

Author

Listed:
  • David Urban

    (Norwegian University of Science and Technology
    Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino)

  • Niccolò Marcucci

    (Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino)

  • Christoph Hubertus Wölfle

    (TUM School of Engineering and Design, Technical University of Munich)

  • Jan Torgersen

    (TUM School of Engineering and Design, Technical University of Munich)

  • Dag Roar Hjelme

    (Norwegian University of Science and Technology)

  • Emiliano Descrovi

    (Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino)

Abstract

Light-responsive polymers and especially amorphous azopolymers with intrinsic anisotropic and polarization-dependent deformation photo-response hold great promises for remotely controlled, tunable devices. However, dynamic control requires reversibility characteristics far beyond what is currently obtainable via plastic deformation of such polymers. Here, we embed azopolymer microparticles in a rubbery elastic matrix at high density. In the resulting composite, cumulative deformations are replaced by reversible shape switching – with two reversible degrees of freedom defined uniquely by the writing beam polarization. We quantify the locally induced strains, including small creeping losses, directly by means of a deformation tracking algorithm acting on microscope images of planar substrates. Further, we introduce free-standing 3D actuators able to smoothly undergo multiple configurational changes, including twisting, roll-in, grabbing-like actuation, and even continuous, pivot-less shape rotation, all dictated by a single wavelength laser beam with controlled polarization.

Suggested Citation

  • David Urban & Niccolò Marcucci & Christoph Hubertus Wölfle & Jan Torgersen & Dag Roar Hjelme & Emiliano Descrovi, 2023. "Polarization-driven reversible actuation in a photo-responsive polymer composite," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42590-y
    DOI: 10.1038/s41467-023-42590-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-42590-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-42590-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bo Zuo & Meng Wang & Bao-Ping Lin & Hong Yang, 2019. "Visible and infrared three-wavelength modulated multi-directional actuators," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    2. Anne Helene Gelebart & Dirk Jan Mulder & Michael Varga & Andrew Konya & Ghislaine Vantomme & E. W. Meijer & Robin L. B. Selinger & Dirk J. Broer, 2017. "Making waves in a photoactive polymer film," Nature, Nature, vol. 546(7660), pages 632-636, June.
    3. Meng Wang & Bao-Ping Lin & Hong Yang, 2016. "A plant tendril mimic soft actuator with phototunable bending and chiral twisting motion modes," Nature Communications, Nature, vol. 7(1), pages 1-8, December.
    4. Hao Zeng & Markus Lahikainen & Li Liu & Zafar Ahmed & Owies M. Wani & Meng Wang & Hong Yang & Arri Priimagi, 2019. "Light-fuelled freestyle self-oscillators," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Peibao & Chen, Yaqi & Sun, Xin & Dai, Yuntong & Li, Kai, 2024. "Light-powered self-sustained chaotic motion of a liquid crystal elastomer-based pendulum," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).
    2. Cheng, Quanbao & Zhou, Lin & Du, Changshen & Li, Kai, 2022. "A light-fueled self-oscillating liquid crystal elastomer balloon with self-shading effect," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    3. Wu, Haiyang & Lou, Jiangfeng & Dai, Yuntong & Zhang, Biao & Li, Kai, 2024. "Bifurcation analysis in liquid crystal elastomer spring self-oscillators under linear light fields," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    4. Dan Wang & Zhaomin Chen & Mingtong Li & Zhen Hou & Changsong Zhan & Qijun Zheng & Dalei Wang & Xin Wang & Mengjiao Cheng & Wenqi Hu & Bin Dong & Feng Shi & Metin Sitti, 2023. "Bioinspired rotary flight of light-driven composite films," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Pengrong Lyu & Dirk J. Broer & Danqing Liu, 2024. "Advancing interactive systems with liquid crystal network-based adaptive electronics," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    6. Neng Xia & Dongdong Jin & Chengfeng Pan & Jiachen Zhang & Zhengxin Yang & Lin Su & Jinsheng Zhao & Liu Wang & Li Zhang, 2022. "Dynamic morphological transformations in soft architected materials via buckling instability encoded heterogeneous magnetization," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    7. Qing Li Zhu & Weixuan Liu & Olena Khoruzhenko & Josef Breu & Wei Hong & Qiang Zheng & Zi Liang Wu, 2024. "Animating hydrogel knotbots with topology-invoked self-regulation," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    8. Jingjing Li & Linlin Mou & Zunfeng Liu & Xiang Zhou & Yongsheng Chen, 2022. "Oscillating light engine realized by photothermal solvent evaporation," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    9. Zhou, Jianwen & He, Lipeng & Yu, Gang & Liu, Lei & Gu, Xiangfeng & Wang, Yuecheng & Cheng, Guangming, 2022. "Research on cam frequency-increasing hybrid piezoelectric electromagnetic energy harvester with center symmetric structure," Renewable Energy, Elsevier, vol. 185(C), pages 959-969.
    10. Yunlong Qiu & Haiyang Wu & Yuntong Dai & Kai Li, 2024. "Behavior Prediction and Inverse Design for Self-Rotating Skipping Ropes Based on Random Forest and Neural Network," Mathematics, MDPI, vol. 12(7), pages 1-20, March.
    11. Bo Hao & Xin Wang & Yue Dong & Mengmeng Sun & Chen Xin & Haojin Yang & Yanfei Cao & Jiaqi Zhu & Xurui Liu & Chong Zhang & Lin Su & Bing Li & Li Zhang, 2024. "Focused ultrasound enables selective actuation and Newton-level force output of untethered soft robots," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    12. Zongsong Yuan & Yuntong Dai & Junxiu Liu & Kai Li, 2024. "Light-Fueled Self-Propulsion of Liquid Crystal Elastomer-Engined Automobiles in Zero-Energy Modes," Mathematics, MDPI, vol. 12(13), pages 1-26, July.
    13. Yue Zhang & Kangkang Liu & Tao Liu & Chujun Ni & Di Chen & Jiamei Guo & Chang Liu & Jian Zhou & Zheng Jia & Qian Zhao & Pengju Pan & Tao Xie, 2021. "Differential diffusion driven far-from-equilibrium shape-shifting of hydrogels," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    14. Wang, Lixia & Sun, Xiang & Wang, Dongfang & Cui, Pengyuan & Wang, Jian & Li, Qian, 2024. "An integrated, multi-functional intrinsic responsive foldable protective layer for space station solar panels," Energy, Elsevier, vol. 303(C).
    15. Qingrui Wang & Xiaoyong Tian & Daokang Zhang & Yanli Zhou & Wanquan Yan & Dichen Li, 2023. "Programmable spatial deformation by controllable off-center freestanding 4D printing of continuous fiber reinforced liquid crystal elastomer composites," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    16. Liu, Junxiu & Qian, Guqian & Dai, Yuntong & Yuan, Zongsong & Song, Wenqiang & Li, Kai, 2024. "Nonlinear dynamics modeling of a light-powered liquid crystal elastomer-based perpetual motion machine," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).
    17. Chen Xin & Zhongguo Ren & Leran Zhang & Liang Yang & Dawei Wang & Yanlei Hu & Jiawen Li & Jiaru Chu & Li Zhang & Dong Wu, 2023. "Light-triggered multi-joint microactuator fabricated by two-in-one femtosecond laser writing," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    18. Yuanhao Chen & Cristian Valenzuela & Xuan Zhang & Xiao Yang & Ling Wang & Wei Feng, 2023. "Light-driven dandelion-inspired microfliers," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42590-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.