IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v184y2024ics0960077924005794.html
   My bibliography  Save this article

Light-powered self-sustained chaotic motion of a liquid crystal elastomer-based pendulum

Author

Listed:
  • Xu, Peibao
  • Chen, Yaqi
  • Sun, Xin
  • Dai, Yuntong
  • Li, Kai

Abstract

Self-sustained chaotic system based on active materials, where energy is absorbed directly from the environment to maintain one's own motion, furnishes an extensive scope of applications in energy harvesters, encrypted communication, bionic heart devices and other fields. This paper seeks to put forward a self-sustained chaotic pendulum system consisting of a liquid crystal elastomer fiber and a mass sphere under steady illumination. To investigate the self-sustained chaotic behavior of the pendulum system, we combine the dynamic liquid crystal elastomer model with principles of dynamics to establish the corresponding theoretical model of the system. Numerical results suggest that three typical motion modes, namely, static mode, self-sustained oscillation mode and self-sustained chaotic motion mode, are involved in the liquid crystal elastomer pendulum. The self-sustained motion is maintained by the work done by the contraction of the liquid crystal elastomer fiber with a light-blocking coating, which compensates for the energy dissipated by the damping. Furthermore, this study also explores the influences of five system parameters on the motion behavior of the LCE pendulum, and determines the key parameter values for the three distinct motion modes through detailed calculations and bifurcation diagrams. The present research findings demonstrate that introducing a new degree of freedom into the self-sustained periodic vibration system, it is possible to achieve self-sustained chaotic motion, providing significant insights into the development of self-sustained chaotic systems derived from active materials.

Suggested Citation

  • Xu, Peibao & Chen, Yaqi & Sun, Xin & Dai, Yuntong & Li, Kai, 2024. "Light-powered self-sustained chaotic motion of a liquid crystal elastomer-based pendulum," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).
  • Handle: RePEc:eee:chsofr:v:184:y:2024:i:c:s0960077924005794
    DOI: 10.1016/j.chaos.2024.115027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924005794
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:184:y:2024:i:c:s0960077924005794. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.