IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-38792-z.html
   My bibliography  Save this article

Light-driven dandelion-inspired microfliers

Author

Listed:
  • Yuanhao Chen

    (Tianjin University)

  • Cristian Valenzuela

    (Tianjin University)

  • Xuan Zhang

    (Tianjin University)

  • Xiao Yang

    (Tianjin University)

  • Ling Wang

    (Tianjin University
    Tianjin Key Laboratory of Composite and Functional Materials)

  • Wei Feng

    (Tianjin University
    Tianjin Key Laboratory of Composite and Functional Materials)

Abstract

In nature, many plants have evolved diverse flight mechanisms to disperse seeds by wind and propagate their genetic information. Inspired by the flight mechanism of the dandelion seeds, we demonstrate light-driven dandelion-inspired microfliers based on ultralight and super-sensitive tubular-shaped bimorph soft actuator. Like dandelion seeds in nature, the falling velocity of the as-proposed microflier in air can be facilely controlled by tailoring the degree of deformation of the “pappus” under different light irradiations. Importantly, the resulting microflier is able to achieve a mid-air flight above a light source with a sustained flight time of ~8.9 s and a maximum flight height of ~350 mm thanks to the unique dandelion-like 3D structures. Unexpectedly, the resulting microflier is found to exhibit light-driven upward flight accompanied by autorotating motion, and the rotation mode can be customized in either a clockwise or counterclockwise direction by engineering the shape programmability of bimorph soft actuator films. The research disclosed herein can offer new insights into the development of untethered and energy-efficient artificial aerial vehicles that are of paramount significance for many applications from environmental monitoring and wireless communication to future solar sail and robotic spacecraft.

Suggested Citation

  • Yuanhao Chen & Cristian Valenzuela & Xuan Zhang & Xiao Yang & Ling Wang & Wei Feng, 2023. "Light-driven dandelion-inspired microfliers," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38792-z
    DOI: 10.1038/s41467-023-38792-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-38792-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-38792-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Madeleine Seale & Annamaria Kiss & Simone Bovio & Ignazio Maria Viola & Enrico Mastropaolo & Arezki Boudaoud & Naomi Nakayama, 2022. "Dandelion pappus morphing is actuated by radially patterned material swelling," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    2. Cathal Cummins & Madeleine Seale & Alice Macente & Daniele Certini & Enrico Mastropaolo & Ignazio Maria Viola & Naomi Nakayama, 2018. "A separated vortex ring underlies the flight of the dandelion," Nature, Nature, vol. 562(7727), pages 414-418, October.
    3. Dario Floreano & Robert J. Wood, 2015. "Science, technology and the future of small autonomous drones," Nature, Nature, vol. 521(7553), pages 460-466, May.
    4. Anne Helene Gelebart & Dirk Jan Mulder & Michael Varga & Andrew Konya & Ghislaine Vantomme & E. W. Meijer & Robin L. B. Selinger & Dirk J. Broer, 2017. "Making waves in a photoactive polymer film," Nature, Nature, vol. 546(7660), pages 632-636, June.
    5. Vikram Iyer & Hans Gaensbauer & Thomas L. Daniel & Shyamnath Gollakota, 2022. "Wind dispersal of battery-free wireless devices," Nature, Nature, vol. 603(7901), pages 427-433, March.
    6. Yoonho Kim & Hyunwoo Yuk & Ruike Zhao & Shawn A. Chester & Xuanhe Zhao, 2018. "Printing ferromagnetic domains for untethered fast-transforming soft materials," Nature, Nature, vol. 558(7709), pages 274-279, June.
    7. Wenqi Hu & Guo Zhan Lum & Massimo Mastrangeli & Metin Sitti, 2018. "Small-scale soft-bodied robot with multimodal locomotion," Nature, Nature, vol. 554(7690), pages 81-85, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qing Li Zhu & Weixuan Liu & Olena Khoruzhenko & Josef Breu & Wei Hong & Qiang Zheng & Zi Liang Wu, 2024. "Animating hydrogel knotbots with topology-invoked self-regulation," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Jianfeng Yang & M. Ravi Shankar & Hao Zeng, 2024. "Photochemically responsive polymer films enable tunable gliding flights," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Baofu Ding & Pengyuan Zeng & Ziyang Huang & Lixin Dai & Tianshu Lan & Hao Xu & Yikun Pan & Yuting Luo & Qiangmin Yu & Hui-Ming Cheng & Bilu Liu, 2022. "A 2D material–based transparent hydrogel with engineerable interference colours," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    4. Mengmeng Sun & Bo Hao & Shihao Yang & Xin Wang & Carmel Majidi & Li Zhang, 2022. "Exploiting ferrofluidic wetting for miniature soft machines," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    5. Chenghai Li & Qiguang He & Yang Wang & Zhijian Wang & Zijun Wang & Raja Annapooranan & Michael I. Latz & Shengqiang Cai, 2022. "Highly robust and soft biohybrid mechanoluminescence for optical signaling and illumination," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    6. Yue Zhang & Kangkang Liu & Tao Liu & Chujun Ni & Di Chen & Jiamei Guo & Chang Liu & Jian Zhou & Zheng Jia & Qian Zhao & Pengju Pan & Tao Xie, 2021. "Differential diffusion driven far-from-equilibrium shape-shifting of hydrogels," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    7. Wenbo Li & Huyue Chen & Zhiran Yi & Fuyi Fang & Xinyu Guo & Zhiyuan Wu & Qiuhua Gao & Lei Shao & Jian Xu & Guang Meng & Wenming Zhang, 2023. "Self-vectoring electromagnetic soft robots with high operational dimensionality," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    8. Shuyu Xue & Zhipanxin Shi & Zaiyu Wang & Haozhe Tan & Feng Gao & Zicong Zhang & Ziyue Ye & Shifeng Nian & Ting Han & Jianbo Zhang & Zheng Zhao & Ben Zhong Tang & Qiuyu Zhang, 2024. "Fluorescent robust photoactuator via photo-crosslinking induced single-layered janus polyimide," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    9. Siqi An & Xiaowen Li & Zengrong Guo & Yi Huang & Yanlin Zhang & Hanqing Jiang, 2024. "Energy-efficient dynamic 3D metasurfaces via spatiotemporal jamming interleaved assemblies for tactile interfaces," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    10. Dan Wang & Zhaomin Chen & Mingtong Li & Zhen Hou & Changsong Zhan & Qijun Zheng & Dalei Wang & Xin Wang & Mengjiao Cheng & Wenqi Hu & Bin Dong & Feng Shi & Metin Sitti, 2023. "Bioinspired rotary flight of light-driven composite films," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    11. Shaojun Jiang & Bo Li & Jun Zhao & Dong Wu & Yiyuan Zhang & Zhipeng Zhao & Yiyuan Zhang & Hao Yu & Kexiang Shao & Cong Zhang & Rui Li & Chao Chen & Zuojun Shen & Jie Hu & Bin Dong & Ling Zhu & Jiawen , 2023. "Magnetic Janus origami robot for cross-scale droplet omni-manipulation," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    12. Cisternas, Jaime & Concha, Andrés, 2024. "Searching nontrivial magnetic equilibria using the deflated Newton method," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    13. Jun Kyu Choe & Junsoo Kim & Hyeonseo Song & Joonbum Bae & Jiyun Kim, 2023. "A soft, self-sensing tensile valve for perceptive soft robots," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    14. Neng Xia & Dongdong Jin & Chengfeng Pan & Jiachen Zhang & Zhengxin Yang & Lin Su & Jinsheng Zhao & Liu Wang & Li Zhang, 2022. "Dynamic morphological transformations in soft architected materials via buckling instability encoded heterogeneous magnetization," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    15. Yuxuan Sun & Liu Wang & Yangyang Ni & Huajian Zhang & Xiang Cui & Jiahao Li & Yinbo Zhu & Ji Liu & Shiwu Zhang & Yong Chen & Mujun Li, 2023. "3D printing of thermosets with diverse rheological and functional applicabilities," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    16. Xingxing Ke & Haochen Yong & Fukang Xu & Han Ding & Zhigang Wu, 2024. "Stenus-inspired, swift, and agile untethered insect-scale soft propulsors," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    17. Yifeng Shen & Dongdong Jin & Mingming Fu & Sanhu Liu & Zhiwu Xu & Qinghua Cao & Bo Wang & Guoqiang Li & Wenjun Chen & Shaoqin Liu & Xing Ma, 2023. "Reactive wetting enabled anchoring of non-wettable iron oxide in liquid metal for miniature soft robot," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    18. Yunlong Qiu & Haiyang Wu & Yuntong Dai & Kai Li, 2024. "Behavior Prediction and Inverse Design for Self-Rotating Skipping Ropes Based on Random Forest and Neural Network," Mathematics, MDPI, vol. 12(7), pages 1-20, March.
    19. Zemin Liu & Meng Li & Xiaoguang Dong & Ziyu Ren & Wenqi Hu & Metin Sitti, 2022. "Creating three-dimensional magnetic functional microdevices via molding-integrated direct laser writing," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    20. Yuanxi Zhang & Chengfeng Pan & Pengfei Liu & Lelun Peng & Zhouming Liu & Yuanyuan Li & Qingyuan Wang & Tong Wu & Zhe Li & Carmel Majidi & Lelun Jiang, 2023. "Coaxially printed magnetic mechanical electrical hybrid structures with actuation and sensing functionalities," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38792-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.