IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v181y2024ics0960077924001383.html
   My bibliography  Save this article

Bifurcation analysis in liquid crystal elastomer spring self-oscillators under linear light fields

Author

Listed:
  • Wu, Haiyang
  • Lou, Jiangfeng
  • Dai, Yuntong
  • Zhang, Biao
  • Li, Kai

Abstract

Self-oscillating systems based on active materials have been extensively constructed, which are emerging as attractive candidates for promising applications including energy harvesting, autonomous robotics, actuators, and so on. Currently, the properties of self-oscillations, such as amplitude, frequency, and bifurcation points, are generally obtained by numerical methods, which limits their applications. In this paper, we construct a light-fueled spring self-oscillator system, perform bifurcation analysis, and derive analytical solutions for the amplitude and frequency of the self-oscillations. The proposed spring self-oscillator system is composed of a liquid crystal elastomer (LCE) fiber and a mass under a linear light field. Based on the well-established dynamic LCE model, the governing equations of the system are derived and linearized. Through numerical calculation, two motion regimes of the system are found and the mechanism of self-oscillation is revealed. Moreover, the multi-scale method is employed for solving the governing equations and deriving the analytical solutions for frequency, amplitude, and bifurcation points. Following this, the study examines how system parameters impact frequency, amplitude, and bifurcation points, demonstrating agreement between the analytical results and numerical results. The straightforward analysis of the self-oscillating systems through the well-known multi-scale method greatly aids in the design and control of such systems. Meanwhile, the results furnish new insights into understanding of self-oscillating phenomenon and provide a broader range of design concepts applicable to soft robotics, sensors, and energy harvesters.

Suggested Citation

  • Wu, Haiyang & Lou, Jiangfeng & Dai, Yuntong & Zhang, Biao & Li, Kai, 2024. "Bifurcation analysis in liquid crystal elastomer spring self-oscillators under linear light fields," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
  • Handle: RePEc:eee:chsofr:v:181:y:2024:i:c:s0960077924001383
    DOI: 10.1016/j.chaos.2024.114587
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924001383
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.114587?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhao, Dong & Liu, Ying, 2020. "A prototype for light-electric harvester based on light sensitive liquid crystal elastomer cantilever," Energy, Elsevier, vol. 198(C).
    2. Anne Helene Gelebart & Dirk Jan Mulder & Michael Varga & Andrew Konya & Ghislaine Vantomme & E. W. Meijer & Robin L. B. Selinger & Dirk J. Broer, 2017. "Making waves in a photoactive polymer film," Nature, Nature, vol. 546(7660), pages 632-636, June.
    3. Xiao-Qiao Wang & Chuan Fu Tan & Kwok Hoe Chan & Xin Lu & Liangliang Zhu & Sang-Woo Kim & Ghim Wei Ho, 2018. "In-built thermo-mechanical cooperative feedback mechanism for self-propelled multimodal locomotion and electricity generation," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    4. Kamlesh Kumar & Christopher Knie & David Bléger & Mark A. Peletier & Heiner Friedrich & Stefan Hecht & Dirk J. Broer & Michael G. Debije & Albertus P. H. J. Schenning, 2016. "A chaotic self-oscillating sunlight-driven polymer actuator," Nature Communications, Nature, vol. 7(1), pages 1-8, September.
    5. Hao Zeng & Markus Lahikainen & Li Liu & Zafar Ahmed & Owies M. Wani & Meng Wang & Hong Yang & Arri Priimagi, 2019. "Light-fuelled freestyle self-oscillators," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Peibao & Chen, Yaqi & Sun, Xin & Dai, Yuntong & Li, Kai, 2024. "Light-powered self-sustained chaotic motion of a liquid crystal elastomer-based pendulum," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Peibao & Chen, Yaqi & Sun, Xin & Dai, Yuntong & Li, Kai, 2024. "Light-powered self-sustained chaotic motion of a liquid crystal elastomer-based pendulum," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).
    2. Cheng, Quanbao & Zhou, Lin & Du, Changshen & Li, Kai, 2022. "A light-fueled self-oscillating liquid crystal elastomer balloon with self-shading effect," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    3. Liu, Junxiu & Qian, Guqian & Dai, Yuntong & Yuan, Zongsong & Song, Wenqiang & Li, Kai, 2024. "Nonlinear dynamics modeling of a light-powered liquid crystal elastomer-based perpetual motion machine," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).
    4. Jingjing Li & Linlin Mou & Zunfeng Liu & Xiang Zhou & Yongsheng Chen, 2022. "Oscillating light engine realized by photothermal solvent evaporation," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. David Urban & Niccolò Marcucci & Christoph Hubertus Wölfle & Jan Torgersen & Dag Roar Hjelme & Emiliano Descrovi, 2023. "Polarization-driven reversible actuation in a photo-responsive polymer composite," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    6. Wu, Haiyang & Ge, Dali & Chen, Jiajing & Xu, Peibao & Li, Kai, 2024. "A light-fueled self-rolling unicycle with a liquid crystal elastomer rod engine," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
    7. Neng Xia & Dongdong Jin & Chengfeng Pan & Jiachen Zhang & Zhengxin Yang & Lin Su & Jinsheng Zhao & Liu Wang & Li Zhang, 2022. "Dynamic morphological transformations in soft architected materials via buckling instability encoded heterogeneous magnetization," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    8. Qing Li Zhu & Weixuan Liu & Olena Khoruzhenko & Josef Breu & Wei Hong & Qiang Zheng & Zi Liang Wu, 2024. "Animating hydrogel knotbots with topology-invoked self-regulation," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    9. Serena Arnaboldi & Gerardo Salinas & Sabrina Bichon & Sebastien Gounel & Nicolas Mano & Alexander Kuhn, 2023. "Bi-enzymatic chemo-mechanical feedback loop for continuous self-sustained actuation of conducting polymers," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    10. Zhou, Jianwen & He, Lipeng & Yu, Gang & Liu, Lei & Gu, Xiangfeng & Wang, Yuecheng & Cheng, Guangming, 2022. "Research on cam frequency-increasing hybrid piezoelectric electromagnetic energy harvester with center symmetric structure," Renewable Energy, Elsevier, vol. 185(C), pages 959-969.
    11. Yunlong Qiu & Haiyang Wu & Yuntong Dai & Kai Li, 2024. "Behavior Prediction and Inverse Design for Self-Rotating Skipping Ropes Based on Random Forest and Neural Network," Mathematics, MDPI, vol. 12(7), pages 1-20, March.
    12. Zongsong Yuan & Yuntong Dai & Junxiu Liu & Kai Li, 2024. "Light-Fueled Self-Propulsion of Liquid Crystal Elastomer-Engined Automobiles in Zero-Energy Modes," Mathematics, MDPI, vol. 12(13), pages 1-26, July.
    13. Yue Zhang & Kangkang Liu & Tao Liu & Chujun Ni & Di Chen & Jiamei Guo & Chang Liu & Jian Zhou & Zheng Jia & Qian Zhao & Pengju Pan & Tao Xie, 2021. "Differential diffusion driven far-from-equilibrium shape-shifting of hydrogels," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    14. Wang, Lixia & Sun, Xiang & Wang, Dongfang & Cui, Pengyuan & Wang, Jian & Li, Qian, 2024. "An integrated, multi-functional intrinsic responsive foldable protective layer for space station solar panels," Energy, Elsevier, vol. 303(C).
    15. Yeongju Jung & Kangkyu Kwon & Jinwoo Lee & Seung Hwan Ko, 2024. "Untethered soft actuators for soft standalone robotics," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    16. Shuyu Xue & Zhipanxin Shi & Zaiyu Wang & Haozhe Tan & Feng Gao & Zicong Zhang & Ziyue Ye & Shifeng Nian & Ting Han & Jianbo Zhang & Zheng Zhao & Ben Zhong Tang & Qiuyu Zhang, 2024. "Fluorescent robust photoactuator via photo-crosslinking induced single-layered janus polyimide," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    17. Dan Wang & Zhaomin Chen & Mingtong Li & Zhen Hou & Changsong Zhan & Qijun Zheng & Dalei Wang & Xin Wang & Mengjiao Cheng & Wenqi Hu & Bin Dong & Feng Shi & Metin Sitti, 2023. "Bioinspired rotary flight of light-driven composite films," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    18. Pengrong Lyu & Dirk J. Broer & Danqing Liu, 2024. "Advancing interactive systems with liquid crystal network-based adaptive electronics," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    19. Yuanhao Chen & Cristian Valenzuela & Xuan Zhang & Xiao Yang & Ling Wang & Wei Feng, 2023. "Light-driven dandelion-inspired microfliers," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    20. Jing Fan Yang & Thomas A. Berrueta & Allan M. Brooks & Albert Tianxiang Liu & Ge Zhang & David Gonzalez-Medrano & Sungyun Yang & Volodymyr B. Koman & Pavel Chvykov & Lexy N. LeMar & Marc Z. Miskin & T, 2022. "Emergent microrobotic oscillators via asymmetry-induced order," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:181:y:2024:i:c:s0960077924001383. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.