IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v186y2024ics0960077924008798.html
   My bibliography  Save this article

A light-fueled self-rolling unicycle with a liquid crystal elastomer rod engine

Author

Listed:
  • Wu, Haiyang
  • Ge, Dali
  • Chen, Jiajing
  • Xu, Peibao
  • Li, Kai

Abstract

Active materials hold substantial potential for self-sustaining motion, however, the dependency on movable light or extensive area illumination in current structures often restricts the design and practical deployment of such active machines. In this study, we report a novel zero-energy-mode, self-rolling unicycle equipped with a liquid crystal elastomer rod engine, which fueled by a fixed, small-area light source. By employing an elaborate dynamic model for liquid crystal elastomer, we derive the lateral curvature of the liquid crystal elastomer rod and the driving moment necessary for the unicycle's self-rolling. The study results demonstrate that the self-rolling of the unicycle is driven by a moment induced by the shift in the center of gravity of the curved liquid crystal elastomer rod. Our numerical simulations indicate the presence of a supercritical Hopf bifurcation point delineating the transition between the self-rolling mode and the static mode within the unicycle system. Additionally, the rolling velocity of the unicycle relies on a handful of key system parameters, notably including light intensity, light penetration depth, length of the liquid crystal elastomer rod, rolling friction coefficient, total mass of the unicycle, and wheel radius of the unicycle. The experimental validation of a self-rolling unicycle with zero-energy-mode has been conducted. The self-rolling unicycle constructed in this paper has excellent characteristics of simple structure, zero-energy-mode, horizontal constant light source, and small area light source, providing valuable insights for the utilization of photoresponsive liquid crystal elastomer rods in soft robotics, medical devices, energy harvesting systems, and actuators.

Suggested Citation

  • Wu, Haiyang & Ge, Dali & Chen, Jiajing & Xu, Peibao & Li, Kai, 2024. "A light-fueled self-rolling unicycle with a liquid crystal elastomer rod engine," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
  • Handle: RePEc:eee:chsofr:v:186:y:2024:i:c:s0960077924008798
    DOI: 10.1016/j.chaos.2024.115327
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924008798
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115327?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:186:y:2024:i:c:s0960077924008798. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.