IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v512y2014i7512d10.1038_nature13417.html
   My bibliography  Save this article

Enhancer loops appear stable during development and are associated with paused polymerase

Author

Listed:
  • Yad Ghavi-Helm

    (European Molecular Biology Laboratory, Genome Biology Unit, D-69117 Heidelberg, Germany)

  • Felix A. Klein

    (European Molecular Biology Laboratory, Genome Biology Unit, D-69117 Heidelberg, Germany)

  • Tibor Pakozdi

    (European Molecular Biology Laboratory, Genome Biology Unit, D-69117 Heidelberg, Germany)

  • Lucia Ciglar

    (European Molecular Biology Laboratory, Genome Biology Unit, D-69117 Heidelberg, Germany)

  • Daan Noordermeer

    (Swiss Federal Institute of Technology, School of Life Sciences, CH-1015 Lausanne, Switzerland)

  • Wolfgang Huber

    (European Molecular Biology Laboratory, Genome Biology Unit, D-69117 Heidelberg, Germany)

  • Eileen E. M. Furlong

    (European Molecular Biology Laboratory, Genome Biology Unit, D-69117 Heidelberg, Germany)

Abstract

A high-resolution map of enhancer three-dimensional contacts during Drosophila embryogenesis shows that although local regulatory interactions are frequent, long-range interactions are also very common; unexpectedly, most interactions appear unchanged between tissues and across development and are formed prior to gene expression, indicating that transcription initiates from preformed enhancer–promoter loops, which are associated with paused polymerase.

Suggested Citation

  • Yad Ghavi-Helm & Felix A. Klein & Tibor Pakozdi & Lucia Ciglar & Daan Noordermeer & Wolfgang Huber & Eileen E. M. Furlong, 2014. "Enhancer loops appear stable during development and are associated with paused polymerase," Nature, Nature, vol. 512(7512), pages 96-100, August.
  • Handle: RePEc:nat:nature:v:512:y:2014:i:7512:d:10.1038_nature13417
    DOI: 10.1038/nature13417
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature13417
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature13417?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mujahid Ali & Lubna Younas & Jing Liu & Huangyi He & Xinpei Zhang & Qi Zhou, 2024. "Development and evolution of Drosophila chromatin landscape in a 3D genome context," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    2. Joyce J. Thompson & Daniel J. Lee & Apratim Mitra & Sarah Frail & Ryan K. Dale & Pedro P. Rocha, 2022. "Extensive co-binding and rapid redistribution of NANOG and GATA6 during emergence of divergent lineages," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    3. Maëlle Bellec & Jérémy Dufourt & George Hunt & Hélène Lenden-Hasse & Antonio Trullo & Amal Zine El Aabidine & Marie Lamarque & Marissa M. Gaskill & Heloïse Faure-Gautron & Mattias Mannervik & Melissa , 2022. "The control of transcriptional memory by stable mitotic bookmarking," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    4. Vivekanandan Ramalingam & Xinyang Yu & Brian D. Slaughter & Jay R. Unruh & Kaelan J. Brennan & Anastasiia Onyshchenko & Jeffrey J. Lange & Malini Natarajan & Michael Buck & Julia Zeitlinger, 2023. "Lola-I is a promoter pioneer factor that establishes de novo Pol II pausing during development," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    5. Dahong Chen & Catherine E. McManus & Behram Radmanesh & Leah H. Matzat & Elissa P. Lei, 2021. "Temporal inhibition of chromatin looping and enhancer accessibility during neuronal remodeling," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    6. Jingyao Wang & Shihe Zhang & Hongfang Lu & Heng Xu, 2022. "Differential regulation of alternative promoters emerges from unified kinetics of enhancer-promoter interaction," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    7. Annkatrin Bressin & Olga Jasnovidova & Mirjam Arnold & Elisabeth Altendorfer & Filip Trajkovski & Thomas A. Kratz & Joanna E. Handzlik & Denes Hnisz & Andreas Mayer, 2023. "High-sensitive nascent transcript sequencing reveals BRD4-specific control of widespread enhancer and target gene transcription," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    8. Christopher T. Rhodes & Joyce J. Thompson & Apratim Mitra & Dhanya Asokumar & Dongjin R. Lee & Daniel J. Lee & Yajun Zhang & Eva Jason & Ryan K. Dale & Pedro P. Rocha & Timothy J. Petros, 2022. "An epigenome atlas of neural progenitors within the embryonic mouse forebrain," Nature Communications, Nature, vol. 13(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:512:y:2014:i:7512:d:10.1038_nature13417. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.