Author
Listed:
- Frank J Bruggeman
- Nils Blüthgen
- Hans V Westerhoff
Abstract
Fluctuations in the copy number of key regulatory macromolecules (“noise”) may cause physiological heterogeneity in populations of (isogenic) cells. The kinetics of processes and their wiring in molecular networks can modulate this molecular noise. Here we present a theoretical framework to study the principles of noise management by the molecular networks in living cells. The theory makes use of the natural, hierarchical organization of those networks and makes their noise management more understandable in terms of network structure. Principles governing noise management by ultrasensitive systems, signaling cascades, gene networks and feedback circuitry are discovered using this approach. For a few frequently occurring network motifs we show how they manage noise. We derive simple and intuitive equations for noise in molecule copy numbers as a determinant of physiological heterogeneity. We show how noise levels and signal sensitivity can be set independently in molecular networks, but often changes in signal sensitivity affect noise propagation. Using theory and simulations, we show that negative feedback can both enhance and reduce noise. We identify a trade-off; noise reduction in one molecular intermediate by negative feedback is at the expense of increased noise in the levels of other molecules along the feedback loop. The reactants of the processes that are strongly (cooperatively) regulated, so as to allow for negative feedback with a high strength, will display enhanced noise.Author Summary: Within cells, fluctuations in molecule numbers are inevitable, since the synthesis and degradation of molecules are not synchronised. Such molecular noise can be transferred to other molecules through regulatory interactions. Noise in molecular networks, and especially in gene expression, has been studied extensively over the past years, both experimentally and through mathematical modelling. In this work, we present a theoretical framework that merges concepts derived from metabolic control analysis (which was originally developed to describe the control in metabolic pathways) with linear noise approximation (a concept from statistical physics). This framework is useful to analyse how noise propagates through molecular networks, how noise can be managed within the networks and how different network designs reduce or enhance noise. The present theory makes use of the natural, hierarchical organization of regulatory networks and makes their noise management more understandable in terms of network structure. Within this paper, we apply the framework to signaling and regulatory cascades, and analyse how feedback and time scale separation influence noise propagation in molecular networks.
Suggested Citation
Frank J Bruggeman & Nils Blüthgen & Hans V Westerhoff, 2009.
"Noise Management by Molecular Networks,"
PLOS Computational Biology, Public Library of Science, vol. 5(9), pages 1-11, September.
Handle:
RePEc:plo:pcbi00:1000506
DOI: 10.1371/journal.pcbi.1000506
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1000506. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.