IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-30315-6.html
   My bibliography  Save this article

Differential regulation of alternative promoters emerges from unified kinetics of enhancer-promoter interaction

Author

Listed:
  • Jingyao Wang

    (Shanghai Jiao Tong University
    Shanghai Jiao Tong University)

  • Shihe Zhang

    (Shanghai Jiao Tong University
    Shanghai Jiao Tong University)

  • Hongfang Lu

    (Shanghai Jiao Tong University
    Shanghai Jiao Tong University)

  • Heng Xu

    (Shanghai Jiao Tong University
    Shanghai Jiao Tong University)

Abstract

Many eukaryotic genes contain alternative promoters with distinct expression patterns. How these promoters are differentially regulated remains elusive. Here, we apply single-molecule imaging to quantify the transcriptional regulation of two alternative promoters (P1 and P2) of the Bicoid (Bcd) target gene hunchback in syncytial blastoderm Drosophila embryos. Contrary to the previous notion that Bcd only activates P2, we find that Bcd activates both promoters via the same two enhancers. P1 activation is less frequent and requires binding of more Bcd molecules than P2 activation. Using a theoretical model to relate promoter activity to enhancer states, we show that the two promoters follow common transcription kinetics driven by sequential Bcd binding at the two enhancers. Bcd binding at either enhancer primarily activates P2, while P1 activation relies more on Bcd binding at both enhancers. These results provide a quantitative framework for understanding the kinetic mechanisms of complex eukaryotic gene regulation.

Suggested Citation

  • Jingyao Wang & Shihe Zhang & Hongfang Lu & Heng Xu, 2022. "Differential regulation of alternative promoters emerges from unified kinetics of enhancer-promoter interaction," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30315-6
    DOI: 10.1038/s41467-022-30315-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-30315-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-30315-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yad Ghavi-Helm & Felix A. Klein & Tibor Pakozdi & Lucia Ciglar & Daan Noordermeer & Wolfgang Huber & Eileen E. M. Furlong, 2014. "Enhancer loops appear stable during development and are associated with paused polymerase," Nature, Nature, vol. 512(7512), pages 96-100, August.
    2. Arjun Raj & Charles S Peskin & Daniel Tranchina & Diana Y Vargas & Sanjay Tyagi, 2006. "Stochastic mRNA Synthesis in Mammalian Cells," PLOS Biology, Public Library of Science, vol. 4(10), pages 1-13, September.
    3. Virginia L. Pimmett & Matthieu Dejean & Carola Fernandez & Antonio Trullo & Edouard Bertrand & Ovidiu Radulescu & Mounia Lagha, 2021. "Quantitative imaging of transcription in living Drosophila embryos reveals the impact of core promoter motifs on promoter state dynamics," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    4. Katjana Tantale & Florian Mueller & Alja Kozulic-Pirher & Annick Lesne & Jean-Marc Victor & Marie-Cécile Robert & Serena Capozi & Racha Chouaib & Volker Bäcker & Julio Mateos-Langerak & Xavier Darzacq, 2016. "A single-molecule view of transcription reveals convoys of RNA polymerases and multi-scale bursting," Nature Communications, Nature, vol. 7(1), pages 1-14, November.
    5. Junbo Liu & Jun Ma, 2013. "Dampened regulates the activating potency of Bicoid and the embryonic patterning outcome in Drosophila," Nature Communications, Nature, vol. 4(1), pages 1-11, December.
    6. Ataman Sendoel & Joshua G. Dunn & Edwin H. Rodriguez & Shruti Naik & Nicholas C. Gomez & Brian Hurwitz & John Levorse & Brian D. Dill & Daniel Schramek & Henrik Molina & Jonathan S. Weissman & Elaine , 2017. "Translation from unconventional 5′ start sites drives tumour initiation," Nature, Nature, vol. 541(7638), pages 494-499, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vivekanandan Ramalingam & Xinyang Yu & Brian D. Slaughter & Jay R. Unruh & Kaelan J. Brennan & Anastasiia Onyshchenko & Jeffrey J. Lange & Malini Natarajan & Michael Buck & Julia Zeitlinger, 2023. "Lola-I is a promoter pioneer factor that establishes de novo Pol II pausing during development," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Mohammad Soltani & Cesar A Vargas-Garcia & Duarte Antunes & Abhyudai Singh, 2016. "Intercellular Variability in Protein Levels from Stochastic Expression and Noisy Cell Cycle Processes," PLOS Computational Biology, Public Library of Science, vol. 12(8), pages 1-23, August.
    3. Amy L. Hughes & Aleksander T. Szczurek & Jessica R. Kelley & Anna Lastuvkova & Anne H. Turberfield & Emilia Dimitrova & Neil P. Blackledge & Robert J. Klose, 2023. "A CpG island-encoded mechanism protects genes from premature transcription termination," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    4. Alistair N Boettiger & Peter L Ralph & Steven N Evans, 2011. "Transcriptional Regulation: Effects of Promoter Proximal Pausing on Speed, Synchrony and Reliability," PLOS Computational Biology, Public Library of Science, vol. 7(5), pages 1-14, May.
    5. Matthieu Wyart & David Botstein & Ned S Wingreen, 2010. "Evaluating Gene Expression Dynamics Using Pairwise RNA FISH Data," PLOS Computational Biology, Public Library of Science, vol. 6(11), pages 1-14, November.
    6. Qiwen Sun & Zhaohang Cai & Chunjuan Zhu, 2022. "A Novel Dynamical Regulation of mRNA Distribution by Cross-Talking Pathways," Mathematics, MDPI, vol. 10(9), pages 1-14, May.
    7. Stuart Aitken & Marie-Cécile Robert & Ross D Alexander & Igor Goryanin & Edouard Bertrand & Jean D Beggs, 2010. "Processivity and Coupling in Messenger RNA Transcription," PLOS ONE, Public Library of Science, vol. 5(1), pages 1-12, January.
    8. Singh, Abhyudai & Vahdat, Zahra & Xu, Zikai, 2019. "Time-triggered stochastic hybrid systems with two timer-dependent resets," OSF Preprints u8fzg, Center for Open Science.
    9. Dahong Chen & Catherine E. McManus & Behram Radmanesh & Leah H. Matzat & Elissa P. Lei, 2021. "Temporal inhibition of chromatin looping and enhancer accessibility during neuronal remodeling," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    10. Muir Morrison & Manuel Razo-Mejia & Rob Phillips, 2021. "Reconciling kinetic and thermodynamic models of bacterial transcription," PLOS Computational Biology, Public Library of Science, vol. 17(1), pages 1-30, January.
    11. Elijah Roberts & Andrew Magis & Julio O Ortiz & Wolfgang Baumeister & Zaida Luthey-Schulten, 2011. "Noise Contributions in an Inducible Genetic Switch: A Whole-Cell Simulation Study," PLOS Computational Biology, Public Library of Science, vol. 7(3), pages 1-21, March.
    12. Ross D. Jones & Yili Qian & Katherine Ilia & Benjamin Wang & Michael T. Laub & Domitilla Del Vecchio & Ron Weiss, 2022. "Robust and tunable signal processing in mammalian cells via engineered covalent modification cycles," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    13. Xinyu Hu & Bob van Sluijs & Óscar García-Blay & Yury Stepanov & Koen Rietrae & Wilhelm T. S. Huck & Maike M. K. Hansen, 2024. "ARTseq-FISH reveals position-dependent differences in gene expression of micropatterned mESCs," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    14. Song, Yi & Xu, Wei & Wei, Wei & Niu, Lizhi, 2023. "Dynamical transition of phenotypic states in breast cancer system with Lévy noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 627(C).
    15. Marc S Sherman & Barak A Cohen, 2014. "A Computational Framework for Analyzing Stochasticity in Gene Expression," PLOS Computational Biology, Public Library of Science, vol. 10(5), pages 1-13, May.
    16. Anissa Guillemin & Ronan Duchesne & Fabien Crauste & Sandrine Gonin-Giraud & Olivier Gandrillon, 2019. "Drugs modulating stochastic gene expression affect the erythroid differentiation process," PLOS ONE, Public Library of Science, vol. 14(11), pages 1-19, November.
    17. Rajesh Ramaswamy & Ivo F Sbalzarini & Nélido González-Segredo, 2011. "Noise-Induced Modulation of the Relaxation Kinetics around a Non-Equilibrium Steady State of Non-Linear Chemical Reaction Networks," PLOS ONE, Public Library of Science, vol. 6(1), pages 1-10, January.
    18. Anton J M Larsson & Christoph Ziegenhain & Michael Hagemann-Jensen & Björn Reinius & Tina Jacob & Tim Dalessandri & Gert-Jan Hendriks & Maria Kasper & Rickard Sandberg, 2021. "Transcriptional bursts explain autosomal random monoallelic expression and affect allelic imbalance," PLOS Computational Biology, Public Library of Science, vol. 17(3), pages 1-16, March.
    19. Chen, Aimin & Tian, Tianhai & Chen, Yiren & Zhou, Tianshou, 2022. "Stochastic analysis of a complex gene-expression model," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    20. Zachary R Fox & Brian Munsky, 2019. "The finite state projection based Fisher information matrix approach to estimate information and optimize single-cell experiments," PLOS Computational Biology, Public Library of Science, vol. 15(1), pages 1-23, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30315-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.