IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-41148-2.html
   My bibliography  Save this article

Anomalous isotope effect on mechanical properties of single atomic layer Boron Nitride

Author

Listed:
  • Alexey Falin

    (Geelong Waurn Ponds Campus)

  • Haifeng Lv

    (University of Science and Technology of China)

  • Eli Janzen

    (Kansas State University)

  • James H. Edgar

    (Kansas State University)

  • Rui Zhang

    (The University of Texas at Dallas)

  • Dong Qian

    (The University of Texas at Dallas)

  • Hwo-Shuenn Sheu

    (National Synchrotron Radiation Research Center)

  • Qiran Cai

    (Geelong Waurn Ponds Campus)

  • Wei Gan

    (Geelong Waurn Ponds Campus)

  • Xiaojun Wu

    (University of Science and Technology of China)

  • Elton J. G. Santos

    (The University of Edinburgh
    The University of Edinburgh)

  • Lu Hua Li

    (Geelong Waurn Ponds Campus)

Abstract

The ideal mechanical properties and behaviors of materials without the influence of defects are of great fundamental and engineering significance but considered inaccessible. Here, we use single-atom-thin isotopically pure hexagonal boron nitride (hBN) to demonstrate that two-dimensional (2D) materials offer us close-to ideal experimental platforms to study intrinsic mechanical phenomena. The highly delicate isotope effect on the mechanical properties of monolayer hBN is directly measured by indentation: lighter 10B gives rise to higher elasticity and strength than heavier 11B. This anomalous isotope effect establishes that the intrinsic mechanical properties without the effect of defects could be measured, and the so-called ultrafine and normally neglected isotopic perturbation in nuclear charge distribution sometimes plays a more critical role than the isotopic mass effect in the mechanical and other physical properties of materials.

Suggested Citation

  • Alexey Falin & Haifeng Lv & Eli Janzen & James H. Edgar & Rui Zhang & Dong Qian & Hwo-Shuenn Sheu & Qiran Cai & Wei Gan & Xiaojun Wu & Elton J. G. Santos & Lu Hua Li, 2023. "Anomalous isotope effect on mechanical properties of single atomic layer Boron Nitride," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41148-2
    DOI: 10.1038/s41467-023-41148-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-41148-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-41148-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Aleksey Falin & Qiran Cai & Elton J.G. Santos & Declan Scullion & Dong Qian & Rui Zhang & Zhi Yang & Shaoming Huang & Kenji Watanabe & Takashi Taniguchi & Matthew R. Barnett & Ying Chen & Rodney S. Ru, 2017. "Mechanical properties of atomically thin boron nitride and the role of interlayer interactions," Nature Communications, Nature, vol. 8(1), pages 1-9, August.
    2. Florent Calvo & Yann Magnin, 2016. "Nuclear quantum effects on the thermal expansion coefficient of hexagonal boron nitride monolayer," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 89(3), pages 1-9, March.
    3. Florent Calvo & Yann Magnin, 2016. "Nuclear quantum effects on the thermal expansion coefficient of hexagonal boron nitride monolayer," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 89(3), pages 1-9, March.
    4. Ardavan Zandiatashbar & Gwan-Hyoung Lee & Sung Joo An & Sunwoo Lee & Nithin Mathew & Mauricio Terrones & Takuya Hayashi & Catalin R. Picu & James Hone & Nikhil Koratkar, 2014. "Effect of defects on the intrinsic strength and stiffness of graphene," Nature Communications, Nature, vol. 5(1), pages 1-9, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiacheng Qi & Xu Huang & Xuezhang Xiao & Xinyi Zhang & Panpan Zhou & Shuoqing Zhang & Ruhong Li & Huaqin Kou & Fei Jiang & Yong Yao & Jiangfeng Song & Xingwen Feng & Yan Shi & Wenhua Luo & Lixin Chen, 2024. "Isotope engineering achieved by local coordination design in Ti-Pd co-doped ZrCo-based alloys," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Minmin Yan & Zengxi Wei & Zhichao Gong & Bernt Johannessen & Gonglan Ye & Guanchao He & Jingjing Liu & Shuangliang Zhao & Chunyu Cui & Huilong Fei, 2023. "Sb2S3-templated synthesis of sulfur-doped Sb-N-C with hierarchical architecture and high metal loading for H2O2 electrosynthesis," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Hari Krishna Neupane & Bipin Bhattarai & Narayan Prasad Adhikari, 2022. "Tuning transport properties of B and C sites vacancy defects Graphene/h-BN heterostructures: first-principles study," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(10), pages 1-10, October.
    3. Kuichang Zuo & Xiang Zhang & Xiaochuan Huang & Eliezer F. Oliveira & Hua Guo & Tianshu Zhai & Weipeng Wang & Pedro J. J. Alvarez & Menachem Elimelech & Pulickel M. Ajayan & Jun Lou & Qilin Li, 2022. "Ultrahigh resistance of hexagonal boron nitride to mineral scale formation," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Luca Lavagna & Giuseppina Meligrana & Claudio Gerbaldi & Alberto Tagliaferro & Mattia Bartoli, 2020. "Graphene and Lithium-Based Battery Electrodes: A Review of Recent Literature," Energies, MDPI, vol. 13(18), pages 1-28, September.
    5. Kit-Ying Chan & Xi Shen & Jie Yang & Keng-Te Lin & Harun Venkatesan & Eunyoung Kim & Heng Zhang & Jeng-Hun Lee & Jinhong Yu & Jinglei Yang & Jang-Kyo Kim, 2022. "Scalable anisotropic cooling aerogels by additive freeze-casting," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    6. Zan Li & Yin Zhang & Zhibo Zhang & Yi-Tao Cui & Qiang Guo & Pan Liu & Shenbao Jin & Gang Sha & Kunqing Ding & Zhiqiang Li & Tongxiang Fan & Herbert M. Urbassek & Qian Yu & Ting Zhu & Di Zhang & Y. Mor, 2022. "A nanodispersion-in-nanograins strategy for ultra-strong, ductile and stable metal nanocomposites," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    7. Zhuyuan Wang & Xue Yan & Qinfu Hou & Yue Liu & Xiangkang Zeng & Yuan Kang & Wang Zhao & Xuefeng Li & Shi Yuan & Ruosang Qiu & Md Hemayet Uddin & Ruoxin Wang & Yun Xia & Meipeng Jian & Yan Kang & Li Ga, 2023. "Scalable high yield exfoliation for monolayer nanosheets," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    8. Yufei Sun & Yujia Wang & Enze Wang & Bolun Wang & Hengyi Zhao & Yongpan Zeng & Qinghua Zhang & Yonghuang Wu & Lin Gu & Xiaoyan Li & Kai Liu, 2022. "Determining the interlayer shearing in twisted bilayer MoS2 by nanoindentation," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    9. Nauman Javed, Rana Muhammad & Al-Othman, Amani & Tawalbeh, Muhammad & Olabi, Abdul Ghani, 2022. "Recent developments in graphene and graphene oxide materials for polymer electrolyte membrane fuel cells applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41148-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.