IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-33234-8.html
   My bibliography  Save this article

Scalable anisotropic cooling aerogels by additive freeze-casting

Author

Listed:
  • Kit-Ying Chan

    (The Hong Kong University of Science and Technology
    The Hong Kong Polytechnic University)

  • Xi Shen

    (The Hong Kong University of Science and Technology
    The Hong Kong Polytechnic University)

  • Jie Yang

    (The Hong Kong University of Science and Technology)

  • Keng-Te Lin

    (Swinburne University of Technology, Hawthorn)

  • Harun Venkatesan

    (The Hong Kong University of Science and Technology)

  • Eunyoung Kim

    (The Hong Kong University of Science and Technology)

  • Heng Zhang

    (The Hong Kong University of Science and Technology)

  • Jeng-Hun Lee

    (The Hong Kong University of Science and Technology)

  • Jinhong Yu

    (Chinese Academy of Sciences)

  • Jinglei Yang

    (The Hong Kong University of Science and Technology)

  • Jang-Kyo Kim

    (The Hong Kong University of Science and Technology
    University of New South Wales)

Abstract

Cooling in buildings is vital to human well-being but inevitability consumes significant energy, adding pressure on achieving carbon neutrality. Thermally superinsulating aerogels are promising to isolate the heat for more energy-efficient cooling. However, most aerogels tend to absorb the sunlight for unwanted solar heat gain, and it is challenging to scale up the aerogel fabrication while maintaining consistent properties. Herein, we develop a thermally insulating, solar-reflective anisotropic cooling aerogel panel containing in-plane aligned pores with engineered pore walls using boron nitride nanosheets by an additive freeze-casting technique. The additive freeze-casting offers highly controllable and cumulative freezing dynamics for fabricating decimeter-scale aerogel panels with consistent in-plane pore alignments. The unique anisotropic thermo-optical properties of the nanosheets combined with in-plane pore channels enable the anisotropic cooling aerogel to deliver an ultralow out-of-plane thermal conductivity of 16.9 mW m−1 K−1 and a high solar reflectance of 97%. The excellent dual functionalities allow the anisotropic cooling aerogel to minimize both parasitic and solar heat gains when used as cooling panels under direct sunlight, achieving an up to 7 °C lower interior temperature than commercial silica aerogels. This work offers a new paradigm for the bottom-up fabrication of scalable anisotropic aerogels towards practical energy-efficient cooling applications.

Suggested Citation

  • Kit-Ying Chan & Xi Shen & Jie Yang & Keng-Te Lin & Harun Venkatesan & Eunyoung Kim & Heng Zhang & Jeng-Hun Lee & Jinhong Yu & Jinglei Yang & Jang-Kyo Kim, 2022. "Scalable anisotropic cooling aerogels by additive freeze-casting," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33234-8
    DOI: 10.1038/s41467-022-33234-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-33234-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-33234-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Weiqian Tian & Armin VahidMohammadi & Zhen Wang & Liangqi Ouyang & Majid Beidaghi & Mahiar M. Hamedi, 2019. "Layer-by-layer self-assembly of pillared two-dimensional multilayers," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    2. Yang Si & Jianyong Yu & Xiaomin Tang & Jianlong Ge & Bin Ding, 2014. "Ultralight nanofibre-assembled cellular aerogels with superelasticity and multifunctionality," Nature Communications, Nature, vol. 5(1), pages 1-9, December.
    3. Aaswath P. Raman & Marc Abou Anoma & Linxiao Zhu & Eden Rephaeli & Shanhui Fan, 2014. "Passive radiative cooling below ambient air temperature under direct sunlight," Nature, Nature, vol. 515(7528), pages 540-544, November.
    4. Shanyu Zhao & Gilberto Siqueira & Sarka Drdova & David Norris & Christopher Ubert & Anne Bonnin & Sandra Galmarini & Michal Ganobjak & Zhengyuan Pan & Samuel Brunner & Gustav Nyström & Jing Wang & Mat, 2020. "Additive manufacturing of silica aerogels," Nature, Nature, vol. 584(7821), pages 387-392, August.
    5. Yang Cheng & Xiang Zhang & Yixiu Qin & Pei Dong & Wei Yao & John Matz & Pulickel M. Ajayan & Jianfeng Shen & Mingxin Ye, 2021. "Super-elasticity at 4 K of covalently crosslinked polyimide aerogels with negative Poisson’s ratio," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    6. Chao Jia & Lei Li & Ying Liu & Ben Fang & He Ding & Jianan Song & Yibo Liu & Kejia Xiang & Sen Lin & Ziwei Li & Wenjie Si & Bo Li & Xing Sheng & Dongze Wang & Xiaoding Wei & Hui Wu, 2020. "Highly compressible and anisotropic lamellar ceramic sponges with superior thermal insulation and acoustic absorption performances," Nature Communications, Nature, vol. 11(1), pages 1-13, December.
    7. Aleksey Falin & Qiran Cai & Elton J.G. Santos & Declan Scullion & Dong Qian & Rui Zhang & Zhi Yang & Shaoming Huang & Kenji Watanabe & Takashi Taniguchi & Matthew R. Barnett & Ying Chen & Rodney S. Ru, 2017. "Mechanical properties of atomically thin boron nitride and the role of interlayer interactions," Nature Communications, Nature, vol. 8(1), pages 1-9, August.
    8. Bikram Bhatia & Arny Leroy & Yichen Shen & Lin Zhao & Melissa Gianello & Duanhui Li & Tian Gu & Juejun Hu & Marin Soljačić & Evelyn N. Wang, 2018. "Passive directional sub-ambient daytime radiative cooling," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    9. Changxia Li & Jin Yang & Pradip Pachfule & Shuang Li & Meng-Yang Ye & Johannes Schmidt & Arne Thomas, 2020. "Ultralight covalent organic framework/graphene aerogels with hierarchical porosity," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    10. Xiuqiang Li & Bowen Sun & Chenxi Sui & Ankita Nandi & Haoming Fang & Yucan Peng & Gang Tan & Po-Chun Hsu, 2020. "Integration of daytime radiative cooling and solar heating for year-round energy saving in buildings," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lei Li & Yiqian Zhou & Yang Gao & Xuning Feng & Fangshu Zhang & Weiwei Li & Bin Zhu & Ze Tian & Peixun Fan & Minlin Zhong & Huichang Niu & Shanyu Zhao & Xiaoding Wei & Jia Zhu & Hui Wu, 2023. "Large-scale assembly of isotropic nanofiber aerogels based on columnar-equiaxed crystal transition," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Yucheng Tian & Yixiao Chen & Sai Wang & Xianfeng Wang & Jianyong Yu & Shichao Zhang & Bin Ding, 2024. "Ultrathin aerogel-structured micro/nanofiber metafabric via dual air-gelation synthesis for self-sustainable heating," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Paul Smith & Jiayue Hu & Anthony Griffin & Mark Robertson & Alejandro Güillen Obando & Ethan Bounds & Carmen B. Dunn & Changhuai Ye & Ling Liu & Zhe Qiang, 2024. "Accurate additive manufacturing of lightweight and elastic carbons using plastic precursors," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Xuanjie & Narayan, Shankar, 2022. "Thermal radiative switching interface for energy-efficient temperature control," Renewable Energy, Elsevier, vol. 197(C), pages 574-582.
    2. Zhang, Ji & Yuan, Jianjuan & Liu, Junwei & Zhou, Zhihua & Sui, Jiyuan & Xing, Jincheng & Zuo, Jian, 2021. "Cover shields for sub-ambient radiative cooling: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    3. Liu, Junwei & Zhang, Ji & Zhang, Debao & Jiao, Shifei & Xing, Jincheng & Tang, Huajie & Zhang, Ying & Li, Shuai & Zhou, Zhihua & Zuo, Jian, 2020. "Sub-ambient radiative cooling with wind cover," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    4. Lianhu Xiong & Yun Wei & Chuanliang Chen & Xin Chen & Qiang Fu & Hua Deng, 2023. "Thin lamellar films with enhanced mechanical properties for durable radiative cooling," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. Xiaoyu Zhang & Qi Sun & Xing Liang & Puzhong Gu & Zhenyu Hu & Xiao Yang & Muxiang Liu & Zejun Sun & Jia Huang & Guangming Wu & Guoqing Zu, 2024. "Stretchable and negative-Poisson-ratio porous metamaterials," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    6. Xiaota Cheng & Yi-Tao Liu & Yang Si & Jianyong Yu & Bin Ding, 2022. "Direct synthesis of highly stretchable ceramic nanofibrous aerogels via 3D reaction electrospinning," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    7. Huang, Jiachen & Zhang, Xuan-kai & Yu, Xiyu & Tang, G.H. & Wang, Xinyu & Du, Mu, 2024. "Scalable self-adaptive radiative cooling film through VO2-based switchable core–shell particles," Renewable Energy, Elsevier, vol. 224(C).
    8. Jiang, Kaiyu & Zhang, Kai & Shi, Zijie & Li, Haoran & Wu, Bingyang & Mahian, Omid & Zhu, Yutong, 2023. "Experimental and numerical study on the potential of a new radiative cooling paint boosted by SiO2 microparticles for energy saving," Energy, Elsevier, vol. 283(C).
    9. Geon Lee & Hyunjung Kang & Jooyeong Yun & Dongwoo Chae & Minsu Jeong & Minseo Jeong & Dasol Lee & Miso Kim & Heon Lee & Junsuk Rho, 2024. "Integrated triboelectric nanogenerator and radiative cooler for all-weather transparent glass surfaces," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    10. Zhao, Bin & Liu, Jie & Hu, Mingke & Ao, Xianze & Li, Lanxin & Xuan, Qingdong & Pei, Gang, 2023. "Performance analysis of a broadband selective absorber/emitter for hybrid utilization of solar thermal and radiative cooling," Renewable Energy, Elsevier, vol. 205(C), pages 763-771.
    11. Chen, Siru & Lin, Kaixin & Pan, Aiqiang & Ho, Tsz Chung & Zhu, Yihao & Tso, Chi Yan, 2023. "Study of a passive radiative cooling coating on chemical storage tanks for evaporative loss control," Renewable Energy, Elsevier, vol. 211(C), pages 326-335.
    12. Ziwei Fan & Taeseung Hwang & Sam Lin & Yixin Chen & Zi Jing Wong, 2024. "Directional thermal emission and display using pixelated non-imaging micro-optics," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    13. Zhao, Bin & Wang, Chuyao & Hu, Mingke & Ao, Xianze & Liu, Jie & Xuan, Qingdong & Pei, Gang, 2022. "Light and thermal management of the semi-transparent radiative cooling glass for buildings," Energy, Elsevier, vol. 238(PA).
    14. Feng Xiong & Jiawei Zhou & Yongkang Jin & Zitao Zhang & Mulin Qin & Haiwei Han & Zhenghui Shen & Shenghui Han & Xiaoye Geng & Kaihang Jia & Ruqiang Zou, 2024. "Thermal shock protection with scalable heat-absorbing aerogels," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    15. Lin, Zizhen & Ping, Xiaofan & Zhao, Dongming & Cai, Zihe & Wang, Xingtao & Zhang, Chi & Wang, Lichuang & Li, Menglei & Chen, Xiongfei & Niu, Jingkai & Xue, Yao & Liu, Yun & Li, Xinlian & Qin, Xiaojun , 2024. "A biomimetic non-woven fabric with passive thermal-insulation and active heat-recovering," Applied Energy, Elsevier, vol. 353(PA).
    16. Xuan, Qingdong & Yang, Ning & Kai, Mingfeng & Wang, Chuyao & Jiang, Bin & Liu, Xunfen & Li, Guiqiang & Pei, Gang & Zhao, Bin, 2024. "Combined daytime radiative cooling and solar photovoltaic/thermal hybrid system for year-round energy saving in buildings," Energy, Elsevier, vol. 304(C).
    17. Quan Zhang & Yiwen Lv & Yufeng Wang & Shixiong Yu & Chenxi Li & Rujun Ma & Yongsheng Chen, 2022. "Temperature-dependent dual-mode thermal management device with net zero energy for year-round energy saving," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    18. Lv, Song & Ji, Yishuang & Qian, Zuoqin & He, Wei & Hu, Zhongting & Liu, Minghou, 2021. "A novel strategy of enhancing sky radiative cooling by solar photovoltaic-thermoelectric cooler," Energy, Elsevier, vol. 219(C).
    19. Zhao, Bin & Hu, Mingke & Ao, Xianze & Chen, Nuo & Xuan, Qingdong & Su, Yuehong & Pei, Gang, 2019. "A novel strategy for a building-integrated diurnal photovoltaic and all-day radiative cooling system," Energy, Elsevier, vol. 183(C), pages 892-900.
    20. Lei Li & Yiqian Zhou & Yang Gao & Xuning Feng & Fangshu Zhang & Weiwei Li & Bin Zhu & Ze Tian & Peixun Fan & Minlin Zhong & Huichang Niu & Shanyu Zhao & Xiaoding Wei & Jia Zhu & Hui Wu, 2023. "Large-scale assembly of isotropic nanofiber aerogels based on columnar-equiaxed crystal transition," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33234-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.