IDEAS home Printed from https://ideas.repec.org/a/spr/eurphb/v89y2016i3d10.1140_epjb_e2016-60839-6.html
   My bibliography  Save this article

Nuclear quantum effects on the thermal expansion coefficient of hexagonal boron nitride monolayer

Author

Listed:
  • Florent Calvo

    (LIPhy, Univ. Grenoble 1 and CNRS, UMR 5588)

  • Yann Magnin

    (CINaM, CNRS Aix-Marseille University)

Abstract

This work examines the importance of vibrational delocalization on a basic thermomechanical property of a hexagonal boron nitride monolayer, namely its thermal expansion coefficient (TEC). Using a recently parametrized bond-order potential of the Tersoff type, the TEC was theoretically obtained from the thermal variations of the lattice parameter a(T) calculated using three different methods: (i) the quasiharmonic approximation; (ii) its anharmonic improvement based on self-consistent phonons; (iii) fully anharmonic Monte Carlo simulations possibly enhanced within the path-integral framework to account for nuclear quantum effects. The results obtained with the three methods are generally consistent with one another and with other recently published data, and indicate that the TEC is negative at least up to ca. 700 K, quantum mechanical effects leading to a significant expansion by about 50% relative to the classical result. Comparison with experimental data on bulk hexagonal BN suggests significant differences, which originate from possible inaccuracies in the model that tend to underestimate the lattice parameter itself, and most likely from the 2D nature of the monolayer and the key contribution of out-of-plane modes. The effects of isotopic purity in the natural abundances of boron are found to be insignificant.

Suggested Citation

  • Florent Calvo & Yann Magnin, 2016. "Nuclear quantum effects on the thermal expansion coefficient of hexagonal boron nitride monolayer," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 89(3), pages 1-9, March.
  • Handle: RePEc:spr:eurphb:v:89:y:2016:i:3:d:10.1140_epjb_e2016-60839-6
    DOI: 10.1140/epjb/e2016-60839-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1140/epjb/e2016-60839-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1140/epjb/e2016-60839-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alexey Falin & Haifeng Lv & Eli Janzen & James H. Edgar & Rui Zhang & Dong Qian & Hwo-Shuenn Sheu & Qiran Cai & Wei Gan & Xiaojun Wu & Elton J. G. Santos & Lu Hua Li, 2023. "Anomalous isotope effect on mechanical properties of single atomic layer Boron Nitride," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Keywords

    Solid State and Materials;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:89:y:2016:i:3:d:10.1140_epjb_e2016-60839-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.