IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-41004-3.html
   My bibliography  Save this article

Prediction of base editor off-targets by deep learning

Author

Listed:
  • Chengdong Zhang

    (Fudan University Pudong Medical Center; State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University
    Shanghai Jiao Tong University School of Medicine
    Hubei University of Medicine)

  • Yuan Yang

    (Fudan University Pudong Medical Center; State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University
    Shanghai Jiao Tong University School of Medicine)

  • Tao Qi

    (Fudan University Pudong Medical Center; State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University)

  • Yuening Zhang

    (School of Life Sciences and Biotechnology) Shanghai Jiao Tong University)

  • Linghui Hou

    (Fudan University Pudong Medical Center; State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University)

  • Jingjing Wei

    (Fudan University Pudong Medical Center; State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University)

  • Jingcheng Yang

    (Fudan University Pudong Medical Center; State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University)

  • Leming Shi

    (Fudan University Pudong Medical Center; State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University)

  • Sang-Ging Ong

    (University of Illinois College of Medicine
    University of Illinois College of Medicine)

  • Hongyan Wang

    (Fudan University Pudong Medical Center; State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University)

  • Hui Wang

    (Shanghai Jiao Tong University School of Medicine)

  • Bo Yu

    (Fudan University Pudong Medical Center; State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University)

  • Yongming Wang

    (Fudan University Pudong Medical Center; State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University
    The First Affiliated Hospital of Zhengzhou University
    Shanghai Engineering Research Center of Industrial Microorganisms)

Abstract

Due to the tolerance of mismatches between gRNA and targeting sequence, base editors frequently induce unwanted Cas9-dependent off-target mutations. Here, to develop models to predict such off-targets, we design gRNA-off- target pairs for adenine base editors (ABEs) and cytosine base editors (CBEs) and stably integrate them into the human cells. After five days of editing, we obtain valid efficiency datasets of 54,663 and 55,727 off-targets for ABEs and CBEs, respectively. We use the datasets to train deep learning models, resulting in ABEdeepoff and CBEdeepoff, which can predict off-target sites. We use these tools to predict off-targets for a panel of endogenous loci and achieve Spearman correlation values varying from 0.710 to 0.859. Finally, we develop an integrated tool that is freely accessible via an online web server http://www.deephf.com/#/bedeep/bedeepoff . These tools could facilitate minimizing the off-target effects of base editing.

Suggested Citation

  • Chengdong Zhang & Yuan Yang & Tao Qi & Yuening Zhang & Linghui Hou & Jingjing Wei & Jingcheng Yang & Leming Shi & Sang-Ging Ong & Hongyan Wang & Hui Wang & Bo Yu & Yongming Wang, 2023. "Prediction of base editor off-targets by deep learning," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41004-3
    DOI: 10.1038/s41467-023-41004-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-41004-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-41004-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Daqi Wang & Chengdong Zhang & Bei Wang & Bin Li & Qiang Wang & Dong Liu & Hongyan Wang & Yan Zhou & Leming Shi & Feng Lan & Yongming Wang, 2019. "Optimized CRISPR guide RNA design for two high-fidelity Cas9 variants by deep learning," Nature Communications, Nature, vol. 10(1), pages 1-14, December.
    2. Josh Tycko & Luis A. Barrera & Nicholas C. Huston & Ari E. Friedland & Xuebing Wu & Jonathan S. Gootenberg & Omar O. Abudayyeh & Vic E. Myer & Christopher J. Wilson & Patrick D. Hsu, 2018. "Publisher Correction: Pairwise library screen systematically interrogates Staphylococcus aureus Cas9 specificity in human cells," Nature Communications, Nature, vol. 9(1), pages 1-1, December.
    3. Alexis C. Komor & Yongjoo B. Kim & Michael S. Packer & John A. Zuris & David R. Liu, 2016. "Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage," Nature, Nature, vol. 533(7603), pages 420-424, May.
    4. Nicole M. Gaudelli & Alexis C. Komor & Holly A. Rees & Michael S. Packer & Ahmed H. Badran & David I. Bryson & David R. Liu, 2017. "Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage," Nature, Nature, vol. 551(7681), pages 464-471, November.
    5. Changyang Zhou & Yidi Sun & Rui Yan & Yajing Liu & Erwei Zuo & Chan Gu & Linxiao Han & Yu Wei & Xinde Hu & Rong Zeng & Yixue Li & Haibo Zhou & Fan Guo & Hui Yang, 2019. "Off-target RNA mutation induced by DNA base editing and its elimination by mutagenesis," Nature, Nature, vol. 571(7764), pages 275-278, July.
    6. Josh Tycko & Luis A. Barrera & Nicholas C. Huston & Ari E. Friedland & Xuebing Wu & Jonathan S. Gootenberg & Omar O. Abudayyeh & Vic E. Myer & Christopher J. Wilson & Patrick D. Hsu, 2018. "Pairwise library screen systematically interrogates Staphylococcus aureus Cas9 specificity in human cells," Nature Communications, Nature, vol. 9(1), pages 1-7, December.
    7. Yihan Zhang & Wei Qin & Xiaochan Lu & Jason Xu & Haigen Huang & Haipeng Bai & Song Li & Shuo Lin, 2017. "Programmable base editing of zebrafish genome using a modified CRISPR-Cas9 system," Nature Communications, Nature, vol. 8(1), pages 1-5, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Emily Zhang & Monica E. Neugebauer & Nicholas A. Krasnow & David R. Liu, 2024. "Phage-assisted evolution of highly active cytosine base editors with enhanced selectivity and minimal sequence context preference," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nathan Bamidele & Han Zhang & Xiaolong Dong & Haoyang Cheng & Nicholas Gaston & Hailey Feinzig & Hanbing Cao & Karen Kelly & Jonathan K. Watts & Jun Xie & Guangping Gao & Erik J. Sontheimer, 2024. "Domain-inlaid Nme2Cas9 adenine base editors with improved activity and targeting scope," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Luke Hoberecht & Pirunthan Perampalam & Aaron Lun & Jean-Philippe Fortin, 2022. "A comprehensive Bioconductor ecosystem for the design of CRISPR guide RNAs across nucleases and technologies," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    3. Qichen Yuan & Xue Gao, 2022. "Multiplex base- and prime-editing with drive-and-process CRISPR arrays," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    4. Guoling Li & Xue Dong & Jiamin Luo & Tanglong Yuan & Tong Li & Guoli Zhao & Hainan Zhang & Jingxing Zhou & Zhenhai Zeng & Shuna Cui & Haoqiang Wang & Yin Wang & Yuyang Yu & Yuan Yuan & Erwei Zuo & Chu, 2024. "Engineering TadA ortholog-derived cytosine base editor without motif preference and adenosine activity limitation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Niannian Xue & Xu Liu & Dan Zhang & Youming Wu & Yi Zhong & Jinxin Wang & Wenjing Fan & Haixia Jiang & Biyun Zhu & Xiyu Ge & Rachel V. L. Gonzalez & Liang Chen & Shun Zhang & Peilu She & Zhilin Zhong , 2023. "Improving adenine and dual base editors through introduction of TadA-8e and Rad51DBD," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    6. Kayeong Lim & Sung-Ik Cho & Jin-Soo Kim, 2022. "Nuclear and mitochondrial DNA editing in human cells with zinc finger deaminases," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    7. Zeyu Lu & Lingtian Zhang & Qing Mu & Junyang Liu & Yu Chen & Haoyuan Wang & Yanjun Zhang & Rui Su & Ruijun Wang & Zhiying Wang & Qi Lv & Zhihong Liu & Jiasen Liu & Yunhua Li & Yanhong Zhao, 2024. "Progress in Research and Prospects for Application of Precision Gene-Editing Technology Based on CRISPR–Cas9 in the Genetic Improvement of Sheep and Goats," Agriculture, MDPI, vol. 14(3), pages 1-17, March.
    8. Jaesuk Lee & Kayeong Lim & Annie Kim & Young Geun Mok & Eugene Chung & Sung-Ik Cho & Ji Min Lee & Jin-Soo Kim, 2023. "Prime editing with genuine Cas9 nickases minimizes unwanted indels," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    9. Shuqian Zhang & Liting Song & Bo Yuan & Cheng Zhang & Jixin Cao & Jinlong Chen & Jiayi Qiu & Yilin Tai & Jingqi Chen & Zilong Qiu & Xing-Ming Zhao & Tian-Lin Cheng, 2023. "TadA reprogramming to generate potent miniature base editors with high precision," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    10. Chao Yang & Zhenzhen Ma & Keshan Wang & Xingxiao Dong & Meiyu Huang & Yaqiu Li & Xiagu Zhu & Ju Li & Zhihui Cheng & Changhao Bi & Xueli Zhang, 2023. "HMGN1 enhances CRISPR-directed dual-function A-to-G and C-to-G base editing," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    11. Jianhang Yin & Rusen Lu & Changchang Xin & Yuhong Wang & Xinyu Ling & Dong Li & Weiwei Zhang & Mengzhu Liu & Wutao Xie & Lingyun Kong & Wen Si & Ping Wei & Bingbing Xiao & Hsiang-Ying Lee & Tao Liu & , 2022. "Cas9 exo-endonuclease eliminates chromosomal translocations during genome editing," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    12. Lin Zhao & Sabrina R. T. Koseki & Rachel A. Silverstein & Nadia Amrani & Christina Peng & Christian Kramme & Natasha Savic & Martin Pacesa & Tomás C. Rodríguez & Teodora Stan & Emma Tysinger & Lauren , 2023. "PAM-flexible genome editing with an engineered chimeric Cas9," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    13. Qian Wang & Jie Yang & Zhicheng Zhong & Jeffrey A. Vanegas & Xue Gao & Anatoly B. Kolomeisky, 2021. "A general theoretical framework to design base editors with reduced bystander effects," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    14. Junhao Fu & Qing Li & Xiaoyu Liu & Tianxiang Tu & Xiujuan Lv & Xidi Yin & Jineng Lv & Zongming Song & Jia Qu & Jinwei Zhang & Jinsong Li & Feng Gu, 2021. "Human cell based directed evolution of adenine base editors with improved efficiency," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    15. Jian Wang & Ke Wang & Zhe Deng & Zhiyu Zhong & Guo Sun & Qing Mei & Fuling Zhou & Zixin Deng & Yuhui Sun, 2024. "Engineered cytosine base editor enabling broad-scope and high-fidelity gene editing in Streptomyces," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    16. Jeonghun Kwon & Minyoung Kim & Seungmin Bae & Anna Jo & Youngho Kim & Jungjoon K. Lee, 2022. "TAPE-seq is a cell-based method for predicting genome-wide off-target effects of prime editor," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    17. Dominique L. Brooks & Manuel J. Carrasco & Ping Qu & William H. Peranteau & Rebecca C. Ahrens-Nicklas & Kiran Musunuru & Mohamad-Gabriel Alameh & Xiao Wang, 2023. "Rapid and definitive treatment of phenylketonuria in variant-humanized mice with corrective editing," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    18. Yakun Wang & Shengjia Tang & Naihui Guo & Ruihu An & Zongliang Ren & Shikai Hu & Xiangjin Wei & Guiai Jiao & Lihong Xie & Ling Wang & Ying Chen & Fengli Zhao & Peisong Hu & Zhonghua Sheng & Shaoqing T, 2023. "Base Editing of EUI1 Improves the Elongation of the Uppermost Internode in Two-Line Male Sterile Rice Lines," Agriculture, MDPI, vol. 13(3), pages 1-13, March.
    19. Daphne Collias & Elena Vialetto & Jiaqi Yu & Khoa Co & Éva d. H. Almási & Ann-Sophie Rüttiger & Tatjana Achmedov & Till Strowig & Chase L. Beisel, 2023. "Systematically attenuating DNA targeting enables CRISPR-driven editing in bacteria," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    20. Jianli Tao & Daniel E. Bauer & Roberto Chiarle, 2023. "Assessing and advancing the safety of CRISPR-Cas tools: from DNA to RNA editing," Nature Communications, Nature, vol. 14(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41004-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.