Cas9 exo-endonuclease eliminates chromosomal translocations during genome editing
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-022-28900-w
Download full text from publisher
References listed on IDEAS
- Fatwa Adikusuma & Sandra Piltz & Mark A. Corbett & Michelle Turvey & Shaun R. McColl & Karla J. Helbig & Michael R. Beard & James Hughes & Richard T. Pomerantz & Paul Q. Thomas, 2018. "Large deletions induced by Cas9 cleavage," Nature, Nature, vol. 560(7717), pages 8-9, August.
- Grégoire Cullot & Julian Boutin & Jérôme Toutain & Florence Prat & Perrine Pennamen & Caroline Rooryck & Martin Teichmann & Emilie Rousseau & Isabelle Lamrissi-Garcia & Véronique Guyonnet-Duperat & Al, 2019. "CRISPR-Cas9 genome editing induces megabase-scale chromosomal truncations," Nature Communications, Nature, vol. 10(1), pages 1-14, December.
- Alexis C. Komor & Yongjoo B. Kim & Michael S. Packer & John A. Zuris & David R. Liu, 2016. "Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage," Nature, Nature, vol. 533(7603), pages 420-424, May.
- Janice S. Chen & Yavuz S. Dagdas & Benjamin P. Kleinstiver & Moira M. Welch & Alexander A. Sousa & Lucas B. Harrington & Samuel H. Sternberg & J. Keith Joung & Ahmet Yildiz & Jennifer A. Doudna, 2017. "Enhanced proofreading governs CRISPR–Cas9 targeting accuracy," Nature, Nature, vol. 550(7676), pages 407-410, October.
- Changyang Zhou & Yidi Sun & Rui Yan & Yajing Liu & Erwei Zuo & Chan Gu & Linxiao Han & Yu Wei & Xinde Hu & Rong Zeng & Yixue Li & Haibo Zhou & Fan Guo & Hui Yang, 2019. "Off-target RNA mutation induced by DNA base editing and its elimination by mutagenesis," Nature, Nature, vol. 571(7764), pages 275-278, July.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Jianhang Yin & Kailun Fang & Yanxia Gao & Liqiong Ou & Shaopeng Yuan & Changchang Xin & Weiwei Wu & Wei-wei Wu & Jiaxu Hong & Hui Yang & Jiazhi Hu, 2022. "Safeguarding genome integrity during gene-editing therapy in a mouse model of age-related macular degeneration," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
- Jinchun Wu & Yang Liu & Liqiong Ou & Tingting Gan & Zhengrong Zhangding & Shaopeng Yuan & Xinyi Liu & Mengzhu Liu & Jiasheng Li & Jianhang Yin & Changchang Xin & Ye Tian & Jiazhi Hu, 2024. "Transfer of mitochondrial DNA into the nuclear genome during induced DNA breaks," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
- Jianli Tao & Daniel E. Bauer & Roberto Chiarle, 2023. "Assessing and advancing the safety of CRISPR-Cas tools: from DNA to RNA editing," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jianli Tao & Daniel E. Bauer & Roberto Chiarle, 2023. "Assessing and advancing the safety of CRISPR-Cas tools: from DNA to RNA editing," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
- Burcu Bestas & Sandra Wimberger & Dmitrii Degtev & Alexandra Madsen & Antje K. Rottner & Fredrik Karlsson & Sergey Naumenko & Megan Callahan & Julia Liz Touza & Margherita Francescatto & Carl Ivar Möl, 2023. "A Type II-B Cas9 nuclease with minimized off-targets and reduced chromosomal translocations in vivo," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
- Michael Kosicki & Felicity Allen & Frances Steward & Kärt Tomberg & Yangyang Pan & Allan Bradley, 2022. "Cas9-induced large deletions and small indels are controlled in a convergent fashion," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
- Jianli Tao & Qi Wang & Carlos Mendez-Dorantes & Kathleen H. Burns & Roberto Chiarle, 2022. "Frequency and mechanisms of LINE-1 retrotransposon insertions at CRISPR/Cas9 sites," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
- Jian Wang & Ke Wang & Zhe Deng & Zhiyu Zhong & Guo Sun & Qing Mei & Fuling Zhou & Zixin Deng & Yuhui Sun, 2024. "Engineered cytosine base editor enabling broad-scope and high-fidelity gene editing in Streptomyces," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
- Dmitrii Degtev & Jack Bravo & Aikaterini Emmanouilidi & Aleksandar Zdravković & Oi Kuan Choong & Julia Liz Touza & Niklas Selfjord & Isabel Weisheit & Margherita Francescatto & Pinar Akcakaya & Michel, 2024. "Engineered PsCas9 enables therapeutic genome editing in mouse liver with lipid nanoparticles," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
- András Tálas & Dorottya A. Simon & Péter I. Kulcsár & Éva Varga & Sarah L. Krausz & Ervin Welker, 2021. "BEAR reveals that increased fidelity variants can successfully reduce the mismatch tolerance of adenine but not cytosine base editors," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
- Chengdong Zhang & Yuan Yang & Tao Qi & Yuening Zhang & Linghui Hou & Jingjing Wei & Jingcheng Yang & Leming Shi & Sang-Ging Ong & Hongyan Wang & Hui Wang & Bo Yu & Yongming Wang, 2023. "Prediction of base editor off-targets by deep learning," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
- Qichen Yuan & Xue Gao, 2022. "Multiplex base- and prime-editing with drive-and-process CRISPR arrays," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
- G. Cullot & J. Boutin & S. Fayet & F. Prat & J. Rosier & D. Cappellen & I. Lamrissi & P. Pennamen & J. Bouron & S. Amintas & C. Thibault & I. Moranvillier & E. Laharanne & J. P. Merlio & V. Guyonnet-D, 2023. "Cell cycle arrest and p53 prevent ON-target megabase-scale rearrangements induced by CRISPR-Cas9," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
- Jianhang Yin & Kailun Fang & Yanxia Gao & Liqiong Ou & Shaopeng Yuan & Changchang Xin & Weiwei Wu & Wei-wei Wu & Jiaxu Hong & Hui Yang & Jiazhi Hu, 2022. "Safeguarding genome integrity during gene-editing therapy in a mouse model of age-related macular degeneration," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
- Péter István Kulcsár & András Tálas & Zoltán Ligeti & Sarah Laura Krausz & Ervin Welker, 2022. "SuperFi-Cas9 exhibits remarkable fidelity but severely reduced activity yet works effectively with ABE8e," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
- Guoling Li & Xue Dong & Jiamin Luo & Tanglong Yuan & Tong Li & Guoli Zhao & Hainan Zhang & Jingxing Zhou & Zhenhai Zeng & Shuna Cui & Haoqiang Wang & Yin Wang & Yuyang Yu & Yuan Yuan & Erwei Zuo & Chu, 2024. "Engineering TadA ortholog-derived cytosine base editor without motif preference and adenosine activity limitation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
- Péter István Kulcsár & András Tálas & Zoltán Ligeti & Eszter Tóth & Zsófia Rakvács & Zsuzsa Bartos & Sarah Laura Krausz & Ágnes Welker & Vanessza Laura Végi & Krisztina Huszár & Ervin Welker, 2023. "A cleavage rule for selection of increased-fidelity SpCas9 variants with high efficiency and no detectable off-targets," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
- Niannian Xue & Xu Liu & Dan Zhang & Youming Wu & Yi Zhong & Jinxin Wang & Wenjing Fan & Haixia Jiang & Biyun Zhu & Xiyu Ge & Rachel V. L. Gonzalez & Liang Chen & Shun Zhang & Peilu She & Zhilin Zhong , 2023. "Improving adenine and dual base editors through introduction of TadA-8e and Rad51DBD," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
- Ju-Chan Park & Yun-Jeong Kim & Gue-Ho Hwang & Chan Young Kang & Sangsu Bae & Hyuk-Jin Cha, 2024. "Enhancing genome editing in hPSCs through dual inhibition of DNA damage response and repair pathways," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
- Zsolt Bodai & Alena L. Bishop & Valentino M. Gantz & Alexis C. Komor, 2022. "Targeting double-strand break indel byproducts with secondary guide RNAs improves Cas9 HDR-mediated genome editing efficiencies," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
- Shuqian Zhang & Liting Song & Bo Yuan & Cheng Zhang & Jixin Cao & Jinlong Chen & Jiayi Qiu & Yilin Tai & Jingqi Chen & Zilong Qiu & Xing-Ming Zhao & Tian-Lin Cheng, 2023. "TadA reprogramming to generate potent miniature base editors with high precision," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
- Behrouz Eslami-Mossallam & Misha Klein & Constantijn V. D. Smagt & Koen V. D. Sanden & Stephen K. Jones & John A. Hawkins & Ilya J. Finkelstein & Martin Depken, 2022. "A kinetic model predicts SpCas9 activity, improves off-target classification, and reveals the physical basis of targeting fidelity," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
- Lin Zhao & Sabrina R. T. Koseki & Rachel A. Silverstein & Nadia Amrani & Christina Peng & Christian Kramme & Natasha Savic & Martin Pacesa & Tomás C. Rodríguez & Teodora Stan & Emma Tysinger & Lauren , 2023. "PAM-flexible genome editing with an engineered chimeric Cas9," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28900-w. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.