IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_s41467-017-00175-6.html
   My bibliography  Save this article

Programmable base editing of zebrafish genome using a modified CRISPR-Cas9 system

Author

Listed:
  • Yihan Zhang

    (Peking University Shenzhen Graduate School
    University of California)

  • Wei Qin

    (Peking University Shenzhen Graduate School)

  • Xiaochan Lu

    (Peking University Shenzhen Graduate School)

  • Jason Xu

    (University of California)

  • Haigen Huang

    (University of California)

  • Haipeng Bai

    (Peking University Shenzhen Graduate School)

  • Song Li

    (Peking University Shenzhen Graduate School)

  • Shuo Lin

    (Peking University Shenzhen Graduate School
    University of California)

Abstract

Precise genetic modifications in model animals are essential for biomedical research. Here, we report a programmable “base editing” system to induce precise base conversion with high efficiency in zebrafish. Using cytidine deaminase fused to Cas9 nickase, up to 28% of site-specific single-base mutations are achieved in multiple gene loci. In addition, an engineered Cas9-VQR variant with 5′-NGA PAM specificities is used to induce base conversion in zebrafish. This shows that Cas9 variants can be used to expand the utility of this technology. Collectively, the targeted base editing system represents a strategy for precise and effective genome editing in zebrafish.

Suggested Citation

  • Yihan Zhang & Wei Qin & Xiaochan Lu & Jason Xu & Haigen Huang & Haipeng Bai & Song Li & Shuo Lin, 2017. "Programmable base editing of zebrafish genome using a modified CRISPR-Cas9 system," Nature Communications, Nature, vol. 8(1), pages 1-5, December.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-00175-6
    DOI: 10.1038/s41467-017-00175-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-017-00175-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-017-00175-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chengdong Zhang & Yuan Yang & Tao Qi & Yuening Zhang & Linghui Hou & Jingjing Wei & Jingcheng Yang & Leming Shi & Sang-Ging Ong & Hongyan Wang & Hui Wang & Bo Yu & Yongming Wang, 2023. "Prediction of base editor off-targets by deep learning," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Luke Hoberecht & Pirunthan Perampalam & Aaron Lun & Jean-Philippe Fortin, 2022. "A comprehensive Bioconductor ecosystem for the design of CRISPR guide RNAs across nucleases and technologies," Nature Communications, Nature, vol. 13(1), pages 1-20, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-00175-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.