IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-40887-6.html
   My bibliography  Save this article

Outer membrane vesicles from a mosquito commensal mediate targeted killing of Plasmodium parasites via the phosphatidylcholine scavenging pathway

Author

Listed:
  • Han Gao

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Yongmao Jiang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Lihua Wang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Guandong Wang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Wenqian Hu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Ling Dong

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Sibao Wang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

Abstract

The gut microbiota is a crucial modulator of Plasmodium infection in mosquitoes, including the production of anti-Plasmodium effector proteins. But how the commensal-derived effectors are translocated into Plasmodium parasites remains obscure. Here we show that a natural Plasmodium blocking symbiotic bacterium Serratia ureilytica Su_YN1 delivers the effector lipase AmLip to Plasmodium parasites via outer membrane vesicles (OMVs). After a blood meal, host serum strongly induces Su_YN1 to release OMVs and the antimalarial effector protein AmLip into the mosquito gut. AmLip is first secreted into the extracellular space via the T1SS and then preferentially loaded on the OMVs that selectively target the malaria parasite, leading to targeted killing of the parasites. Notably, these serum-induced OMVs incorporate certain serum-derived lipids, such as phosphatidylcholine, which is critical for OMV uptake by Plasmodium via the phosphatidylcholine scavenging pathway. These findings reveal that this gut symbiotic bacterium evolved to deliver secreted effector molecules in the form of extracellular vesicles to selectively attack parasites and render mosquitoes refractory to Plasmodium infection. The discovery of the role of gut commensal-derived OMVs as carriers in cross-kingdom communication between mosquito microbiota and Plasmodium parasites offers a potential innovative strategy for blocking malaria transmission.

Suggested Citation

  • Han Gao & Yongmao Jiang & Lihua Wang & Guandong Wang & Wenqian Hu & Ling Dong & Sibao Wang, 2023. "Outer membrane vesicles from a mosquito commensal mediate targeted killing of Plasmodium parasites via the phosphatidylcholine scavenging pathway," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40887-6
    DOI: 10.1038/s41467-023-40887-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-40887-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-40887-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jackie L. Shane & Christina L. Grogan & Caroline Cwalina & David J. Lampe, 2018. "Blood meal-induced inhibition of vector-borne disease by transgenic microbiota," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    2. Enrique R. Rojas & Gabriel Billings & Pascal D. Odermatt & George K. Auer & Lillian Zhu & Amanda Miguel & Fred Chang & Douglas B. Weibel & Julie A. Theriot & Kerwyn Casey Huang, 2018. "The outer membrane is an essential load-bearing element in Gram-negative bacteria," Nature, Nature, vol. 559(7715), pages 617-621, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuqian Qiao & Yingde Xu & Xiangmei Liu & Yufeng Zheng & Bo Li & Yong Han & Zhaoyang Li & Kelvin Wai Kwok Yeung & Yanqin Liang & Shengli Zhu & Zhenduo Cui & Shuilin Wu, 2022. "Microwave assisted antibacterial action of Garcinia nanoparticles on Gram-negative bacteria," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Bob Schiffrin & Joel A. Crossley & Martin Walko & Jonathan M. Machin & G. Nasir Khan & Iain W. Manfield & Andrew J. Wilson & David J. Brockwell & Tomas Fessl & Antonio N. Calabrese & Sheena E. Radford, 2024. "Dual client binding sites in the ATP-independent chaperone SurA," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    3. Irina V. Mikheyeva & Jiawei Sun & Kerwyn Casey Huang & Thomas J. Silhavy, 2023. "Mechanism of outer membrane destabilization by global reduction of protein content," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Augustinas Silale & Yiling Zhu & Jerzy Witwinowski & Robert E. Smith & Kahlan E. Newman & Satya P. Bhamidimarri & Arnaud Baslé & Syma Khalid & Christophe Beloin & Simonetta Gribaldo & Bert Berg, 2023. "Dual function of OmpM as outer membrane tether and nutrient uptake channel in diderm Firmicutes," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    5. Xiangfeng Lai & Mei-Ling Han & Yue Ding & Seong Hoong Chow & Anton P. Brun & Chun-Ming Wu & Phillip J. Bergen & Jhih-hang Jiang & Hsien-Yi Hsu & Benjamin W. Muir & Jacinta White & Jiangning Song & Jia, 2022. "A polytherapy based approach to combat antimicrobial resistance using cubosomes," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    6. Kerry R. Buchholz & Mike Reichelt & Matthew C. Johnson & Sarah J. Robinson & Peter A. Smith & Steven T. Rutherford & John G. Quinn, 2024. "Potent activity of polymyxin B is associated with long-lived super-stoichiometric accumulation mediated by weak-affinity binding to lipid A," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    7. Henri Voedts & Sean P. Kennedy & Guennadi Sezonov & Michel Arthur & Jean-Emmanuel Hugonnet, 2022. "Genome-wide identification of genes required for alternative peptidoglycan cross-linking in Escherichia coli revealed unexpected impacts of β-lactams," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    8. Silvia Grilli & Roberto Galizi & Chrysanthi Taxiarchi, 2021. "Genetic Technologies for Sustainable Management of Insect Pests and Disease Vectors," Sustainability, MDPI, vol. 13(10), pages 1-19, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40887-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.