IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-54607-1.html
   My bibliography  Save this article

Membrane lipid homeostasis dually regulates conformational transition of phosphoethanolamine transferase EptA

Author

Listed:
  • Zhenyu Ma

    (Shandong University)

  • Sue C. Nang

    (Monash University)

  • Zhuo Liu

    (Shandong University)

  • Jingyi Zhu

    (Shandong University)

  • Kaijie Mu

    (Monash University)

  • Limei Xu

    (Shandong University)

  • Min Xiao

    (Shandong University)

  • Lushan Wang

    (Shandong University)

  • Jian Li

    (Monash University)

  • Xukai Jiang

    (Shandong University)

Abstract

The phosphoethanolamine transferase EptA utilizes phosphatidylethanolamine (PE) in the bacterial cell membrane to modify the structure of lipopolysaccharide, thereby conferring antimicrobial resistance on Gram-negative pathogens. Previous studies have indicated that excessive consumption of PE can disrupt the cell membrane, leading to cell death. This implies the presence of a regulatory mechanism for EptA catalysis to maintain a balance between antimicrobial resistance and bacterial growth. Through microsecond-scale all-atom molecular dynamics simulations, we demonstrate that membrane lipid homeostasis modulates the conformational transition and catalytic activation of EptA. The conformation of EptA oscillates between closed and open states, ensuring the precise spatiotemporal sequence of substrates binding. Interestingly, the conformation of EptA is significantly influenced by its surrounding lipid microenvironment, particularly the PE proportion in the membrane. PE-rich membrane conditions initiate and stabilize the open conformation of EptA through both orthosteric and allosteric effects. Importantly, the reaction mediated by EptA gradually depletes PE in the membrane, ultimately hindering its conformational transition and catalytic activation. These findings collectively establish a self-promoted model, illustrating the regulatory mechanism of EptA during the development of antibiotic resistance.

Suggested Citation

  • Zhenyu Ma & Sue C. Nang & Zhuo Liu & Jingyi Zhu & Kaijie Mu & Limei Xu & Min Xiao & Lushan Wang & Jian Li & Xukai Jiang, 2024. "Membrane lipid homeostasis dually regulates conformational transition of phosphoethanolamine transferase EptA," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54607-1
    DOI: 10.1038/s41467-024-54607-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-54607-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-54607-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Enrique R. Rojas & Gabriel Billings & Pascal D. Odermatt & George K. Auer & Lillian Zhu & Amanda Miguel & Fred Chang & Douglas B. Weibel & Julie A. Theriot & Kerwyn Casey Huang, 2018. "The outer membrane is an essential load-bearing element in Gram-negative bacteria," Nature, Nature, vol. 559(7715), pages 617-621, July.
    2. Thomas Clairfeuille & Kerry R. Buchholz & Qingling Li & Erik Verschueren & Peter Liu & Dewakar Sangaraju & Summer Park & Cameron L. Noland & Kelly M. Storek & Nicholas N. Nickerson & Lynn Martin & Tri, 2020. "Structure of the essential inner membrane lipopolysaccharide–PbgA complex," Nature, Nature, vol. 584(7821), pages 479-483, August.
    3. Rie Nygaard & Chris L. B. Graham & Meagan Belcher Dufrisne & Jonathan D. Colburn & Joseph Pepe & Molly A. Hydorn & Silvia Corradi & Chelsea M. Brown & Khuram U. Ashraf & Owen N. Vickery & Nicholas S. , 2023. "Structural basis of peptidoglycan synthesis by E. coli RodA-PBP2 complex," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liselot Dewachter & Babette Deckers & Israel Mares-Mejía & Elen Louwagie & Silke Vercauteren & Paul Matthay & Simon Brückner & Anna-Maria Möller & Franz Narberhaus & Sibylle C. Vonesch & Wim Versées &, 2024. "The role of the essential GTPase ObgE in regulating lipopolysaccharide synthesis in Escherichia coli," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    2. Itxaso Anso & Samira Zouhir & Thibault Géry Sana & Petya Violinova Krasteva, 2024. "Structural basis for synthase activation and cellulose modification in the E. coli Type II Bcs secretion system," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    3. Irina V. Mikheyeva & Jiawei Sun & Kerwyn Casey Huang & Thomas J. Silhavy, 2023. "Mechanism of outer membrane destabilization by global reduction of protein content," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Augustinas Silale & Yiling Zhu & Jerzy Witwinowski & Robert E. Smith & Kahlan E. Newman & Satya P. Bhamidimarri & Arnaud Baslé & Syma Khalid & Christophe Beloin & Simonetta Gribaldo & Bert Berg, 2023. "Dual function of OmpM as outer membrane tether and nutrient uptake channel in diderm Firmicutes," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    5. Xiangfeng Lai & Mei-Ling Han & Yue Ding & Seong Hoong Chow & Anton P. Brun & Chun-Ming Wu & Phillip J. Bergen & Jhih-hang Jiang & Hsien-Yi Hsu & Benjamin W. Muir & Jacinta White & Jiangning Song & Jia, 2022. "A polytherapy based approach to combat antimicrobial resistance using cubosomes," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    6. Yuqian Qiao & Yingde Xu & Xiangmei Liu & Yufeng Zheng & Bo Li & Yong Han & Zhaoyang Li & Kelvin Wai Kwok Yeung & Yanqin Liang & Shengli Zhu & Zhenduo Cui & Shuilin Wu, 2022. "Microwave assisted antibacterial action of Garcinia nanoparticles on Gram-negative bacteria," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    7. Kerry R. Buchholz & Mike Reichelt & Matthew C. Johnson & Sarah J. Robinson & Peter A. Smith & Steven T. Rutherford & John G. Quinn, 2024. "Potent activity of polymyxin B is associated with long-lived super-stoichiometric accumulation mediated by weak-affinity binding to lipid A," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    8. Henri Voedts & Sean P. Kennedy & Guennadi Sezonov & Michel Arthur & Jean-Emmanuel Hugonnet, 2022. "Genome-wide identification of genes required for alternative peptidoglycan cross-linking in Escherichia coli revealed unexpected impacts of β-lactams," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    9. Han Gao & Yongmao Jiang & Lihua Wang & Guandong Wang & Wenqian Hu & Ling Dong & Sibao Wang, 2023. "Outer membrane vesicles from a mosquito commensal mediate targeted killing of Plasmodium parasites via the phosphatidylcholine scavenging pathway," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    10. Sheng Shu & Wei Mi, 2022. "Regulatory mechanisms of lipopolysaccharide synthesis in Escherichia coli," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    11. Bob Schiffrin & Joel A. Crossley & Martin Walko & Jonathan M. Machin & G. Nasir Khan & Iain W. Manfield & Andrew J. Wilson & David J. Brockwell & Tomas Fessl & Antonio N. Calabrese & Sheena E. Radford, 2024. "Dual client binding sites in the ATP-independent chaperone SurA," Nature Communications, Nature, vol. 15(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54607-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.