IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v559y2018i7715d10.1038_s41586-018-0344-3.html
   My bibliography  Save this article

The outer membrane is an essential load-bearing element in Gram-negative bacteria

Author

Listed:
  • Enrique R. Rojas

    (Stanford University
    Stanford University School of Medicine
    Stanford University School of Medicine)

  • Gabriel Billings

    (Stanford University)

  • Pascal D. Odermatt

    (Stanford University
    University of California San Francisco)

  • George K. Auer

    (University of Wisconsin-Madison)

  • Lillian Zhu

    (Stanford University)

  • Amanda Miguel

    (Stanford University)

  • Fred Chang

    (University of California San Francisco)

  • Douglas B. Weibel

    (University of Wisconsin-Madison
    University of Wisconsin-Madison
    University of Wisconsin-Madison)

  • Julie A. Theriot

    (Stanford University School of Medicine
    Stanford University School of Medicine
    Howard Hughes Medical Institute
    Stanford University)

  • Kerwyn Casey Huang

    (Stanford University
    Stanford University School of Medicine
    Stanford University
    Chan Zuckerberg Biohub)

Abstract

Gram-negative bacteria possess a complex cell envelope that consists of a plasma membrane, a peptidoglycan cell wall and an outer membrane. The envelope is a selective chemical barrier1 that defines cell shape2 and allows the cell to sustain large mechanical loads such as turgor pressure3. It is widely believed that the covalently cross-linked cell wall underpins the mechanical properties of the envelope4,5. Here we show that the stiffness and strength of Escherichia coli cells are largely due to the outer membrane. Compromising the outer membrane, either chemically or genetically, greatly increased deformation of the cell envelope in response to stretching, bending and indentation forces, and induced increased levels of cell lysis upon mechanical perturbation and during L-form proliferation. Both lipopolysaccharides and proteins contributed to the stiffness of the outer membrane. These findings overturn the prevailing dogma that the cell wall is the dominant mechanical element within Gram-negative bacteria, instead demonstrating that the outer membrane can be stiffer than the cell wall, and that mechanical loads are often balanced between these structures.

Suggested Citation

  • Enrique R. Rojas & Gabriel Billings & Pascal D. Odermatt & George K. Auer & Lillian Zhu & Amanda Miguel & Fred Chang & Douglas B. Weibel & Julie A. Theriot & Kerwyn Casey Huang, 2018. "The outer membrane is an essential load-bearing element in Gram-negative bacteria," Nature, Nature, vol. 559(7715), pages 617-621, July.
  • Handle: RePEc:nat:nature:v:559:y:2018:i:7715:d:10.1038_s41586-018-0344-3
    DOI: 10.1038/s41586-018-0344-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-018-0344-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-018-0344-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Augustinas Silale & Yiling Zhu & Jerzy Witwinowski & Robert E. Smith & Kahlan E. Newman & Satya P. Bhamidimarri & Arnaud Baslé & Syma Khalid & Christophe Beloin & Simonetta Gribaldo & Bert Berg, 2023. "Dual function of OmpM as outer membrane tether and nutrient uptake channel in diderm Firmicutes," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    2. Xiangfeng Lai & Mei-Ling Han & Yue Ding & Seong Hoong Chow & Anton P. Brun & Chun-Ming Wu & Phillip J. Bergen & Jhih-hang Jiang & Hsien-Yi Hsu & Benjamin W. Muir & Jacinta White & Jiangning Song & Jia, 2022. "A polytherapy based approach to combat antimicrobial resistance using cubosomes," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Han Gao & Yongmao Jiang & Lihua Wang & Guandong Wang & Wenqian Hu & Ling Dong & Sibao Wang, 2023. "Outer membrane vesicles from a mosquito commensal mediate targeted killing of Plasmodium parasites via the phosphatidylcholine scavenging pathway," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    4. Irina V. Mikheyeva & Jiawei Sun & Kerwyn Casey Huang & Thomas J. Silhavy, 2023. "Mechanism of outer membrane destabilization by global reduction of protein content," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. Yuqian Qiao & Yingde Xu & Xiangmei Liu & Yufeng Zheng & Bo Li & Yong Han & Zhaoyang Li & Kelvin Wai Kwok Yeung & Yanqin Liang & Shengli Zhu & Zhenduo Cui & Shuilin Wu, 2022. "Microwave assisted antibacterial action of Garcinia nanoparticles on Gram-negative bacteria," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    6. Kerry R. Buchholz & Mike Reichelt & Matthew C. Johnson & Sarah J. Robinson & Peter A. Smith & Steven T. Rutherford & John G. Quinn, 2024. "Potent activity of polymyxin B is associated with long-lived super-stoichiometric accumulation mediated by weak-affinity binding to lipid A," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    7. Liselot Dewachter & Babette Deckers & Israel Mares-Mejía & Elen Louwagie & Silke Vercauteren & Paul Matthay & Simon Brückner & Anna-Maria Möller & Franz Narberhaus & Sibylle C. Vonesch & Wim Versées &, 2024. "The role of the essential GTPase ObgE in regulating lipopolysaccharide synthesis in Escherichia coli," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    8. Bob Schiffrin & Joel A. Crossley & Martin Walko & Jonathan M. Machin & G. Nasir Khan & Iain W. Manfield & Andrew J. Wilson & David J. Brockwell & Tomas Fessl & Antonio N. Calabrese & Sheena E. Radford, 2024. "Dual client binding sites in the ATP-independent chaperone SurA," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    9. Henri Voedts & Sean P. Kennedy & Guennadi Sezonov & Michel Arthur & Jean-Emmanuel Hugonnet, 2022. "Genome-wide identification of genes required for alternative peptidoglycan cross-linking in Escherichia coli revealed unexpected impacts of β-lactams," Nature Communications, Nature, vol. 13(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:559:y:2018:i:7715:d:10.1038_s41586-018-0344-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.