IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-35528-3.html
   My bibliography  Save this article

Genome-wide identification of genes required for alternative peptidoglycan cross-linking in Escherichia coli revealed unexpected impacts of β-lactams

Author

Listed:
  • Henri Voedts

    (Sorbonne Université, Inserm, Université Paris Cité)

  • Sean P. Kennedy

    (Institut Pasteur, Université Paris Cité, Département Biologie Computationnelle)

  • Guennadi Sezonov

    (Sorbonne Université, Inserm, Université Paris Cité)

  • Michel Arthur

    (Sorbonne Université, Inserm, Université Paris Cité)

  • Jean-Emmanuel Hugonnet

    (Sorbonne Université, Inserm, Université Paris Cité)

Abstract

The d,d-transpeptidase activity of penicillin-binding proteins (PBPs) is the well-known primary target of β-lactam antibiotics that block peptidoglycan polymerization. β-lactam-induced bacterial killing involves complex downstream responses whose causes and consequences are difficult to resolve. Here, we use the functional replacement of PBPs by a β-lactam-insensitive l,d-transpeptidase to identify genes essential to mitigate the effects of PBP inactivation by β-lactams in actively dividing bacteria. The functions of the 179 conditionally essential genes identified by this approach extend far beyond l,d-transpeptidase partners for peptidoglycan polymerization to include proteins involved in stress response and in the assembly of outer membrane polymers. The unsuspected effects of β-lactams include loss of the lipoprotein-mediated covalent bond that links the outer membrane to the peptidoglycan, destabilization of the cell envelope in spite of effective peptidoglycan cross-linking, and increased permeability of the outer membrane. The latter effect indicates that the mode of action of β-lactams involves self-promoted penetration through the outer membrane.

Suggested Citation

  • Henri Voedts & Sean P. Kennedy & Guennadi Sezonov & Michel Arthur & Jean-Emmanuel Hugonnet, 2022. "Genome-wide identification of genes required for alternative peptidoglycan cross-linking in Escherichia coli revealed unexpected impacts of β-lactams," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35528-3
    DOI: 10.1038/s41467-022-35528-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-35528-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-35528-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Michael A DeJesus & Chaitra Ambadipudi & Richard Baker & Christopher Sassetti & Thomas R Ioerger, 2015. "TRANSIT - A Software Tool for Himar1 TnSeq Analysis," PLOS Computational Biology, Public Library of Science, vol. 11(10), pages 1-17, October.
    2. Enrique R. Rojas & Gabriel Billings & Pascal D. Odermatt & George K. Auer & Lillian Zhu & Amanda Miguel & Fred Chang & Douglas B. Weibel & Julie A. Theriot & Kerwyn Casey Huang, 2018. "The outer membrane is an essential load-bearing element in Gram-negative bacteria," Nature, Nature, vol. 559(7715), pages 617-621, July.
    3. Marion Mathelié-Guinlet & Abir T. Asmar & Jean-François Collet & Yves F. Dufrêne, 2020. "Lipoprotein Lpp regulates the mechanical properties of the E. coli cell envelope," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrew M. Hogan & A. S. M. Zisanur Rahman & Anna Motnenko & Aakash Natarajan & Dustin T. Maydaniuk & Beltina León & Zayra Batun & Armando Palacios & Alejandra Bosch & Silvia T. Cardona, 2023. "Profiling cell envelope-antibiotic interactions reveals vulnerabilities to β-lactams in a multidrug-resistant bacterium," Nature Communications, Nature, vol. 14(1), pages 1-21, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Irina V. Mikheyeva & Jiawei Sun & Kerwyn Casey Huang & Thomas J. Silhavy, 2023. "Mechanism of outer membrane destabilization by global reduction of protein content," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Augustinas Silale & Yiling Zhu & Jerzy Witwinowski & Robert E. Smith & Kahlan E. Newman & Satya P. Bhamidimarri & Arnaud Baslé & Syma Khalid & Christophe Beloin & Simonetta Gribaldo & Bert Berg, 2023. "Dual function of OmpM as outer membrane tether and nutrient uptake channel in diderm Firmicutes," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    3. Xiangfeng Lai & Mei-Ling Han & Yue Ding & Seong Hoong Chow & Anton P. Brun & Chun-Ming Wu & Phillip J. Bergen & Jhih-hang Jiang & Hsien-Yi Hsu & Benjamin W. Muir & Jacinta White & Jiangning Song & Jia, 2022. "A polytherapy based approach to combat antimicrobial resistance using cubosomes," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. Yuqian Qiao & Yingde Xu & Xiangmei Liu & Yufeng Zheng & Bo Li & Yong Han & Zhaoyang Li & Kelvin Wai Kwok Yeung & Yanqin Liang & Shengli Zhu & Zhenduo Cui & Shuilin Wu, 2022. "Microwave assisted antibacterial action of Garcinia nanoparticles on Gram-negative bacteria," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    5. Kaj M. Kreutzfeldt & Robert S. Jansen & Travis E. Hartman & Alexandre Gouzy & Ruojun Wang & Inna V. Krieger & Matthew D. Zimmerman & Martin Gengenbacher & Jansy P. Sarathy & Min Xie & Véronique Dartoi, 2022. "CinA mediates multidrug tolerance in Mycobacterium tuberculosis," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    6. Kerry R. Buchholz & Mike Reichelt & Matthew C. Johnson & Sarah J. Robinson & Peter A. Smith & Steven T. Rutherford & John G. Quinn, 2024. "Potent activity of polymyxin B is associated with long-lived super-stoichiometric accumulation mediated by weak-affinity binding to lipid A," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    7. Di Qu & Peng Ge & Laure Botella & Sae Woong Park & Ha-Na Lee & Natalie Thornton & James M. Bean & Inna V. Krieger & James C. Sacchettini & Sabine Ehrt & Courtney C. Aldrich & Dirk Schnappinger, 2024. "Mycobacterial biotin synthases require an auxiliary protein to convert dethiobiotin into biotin," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    8. Samuel Miravet-Verde & Rocco Mazzolini & Carolina Segura-Morales & Alicia Broto & Maria Lluch-Senar & Luis Serrano, 2024. "ProTInSeq: transposon insertion tracking by ultra-deep DNA sequencing to identify translated large and small ORFs," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    9. Han Gao & Yongmao Jiang & Lihua Wang & Guandong Wang & Wenqian Hu & Ling Dong & Sibao Wang, 2023. "Outer membrane vesicles from a mosquito commensal mediate targeted killing of Plasmodium parasites via the phosphatidylcholine scavenging pathway," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    10. Liselot Dewachter & Babette Deckers & Israel Mares-Mejía & Elen Louwagie & Silke Vercauteren & Paul Matthay & Simon Brückner & Anna-Maria Möller & Franz Narberhaus & Sibylle C. Vonesch & Wim Versées &, 2024. "The role of the essential GTPase ObgE in regulating lipopolysaccharide synthesis in Escherichia coli," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    11. Jeffrey A. Freiberg & Valeria M. Reyes Ruiz & Brittney D. Gimza & Caitlin C. Murdoch & Erin R. Green & Jacob M. Curry & James E. Cassat & Eric P. Skaar, 2024. "Restriction of arginine induces antibiotic tolerance in Staphylococcus aureus," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    12. Bob Schiffrin & Joel A. Crossley & Martin Walko & Jonathan M. Machin & G. Nasir Khan & Iain W. Manfield & Andrew J. Wilson & David J. Brockwell & Tomas Fessl & Antonio N. Calabrese & Sheena E. Radford, 2024. "Dual client binding sites in the ATP-independent chaperone SurA," Nature Communications, Nature, vol. 15(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35528-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.