IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-40886-7.html
   My bibliography  Save this article

Metabolic glycan labeling immobilizes dendritic cell membrane and enhances antitumor efficacy of dendritic cell vaccine

Author

Listed:
  • Joonsu Han

    (University of Illinois at Urbana-Champaign)

  • Rimsha Bhatta

    (University of Illinois at Urbana-Champaign)

  • Yusheng Liu

    (University of Illinois at Urbana-Champaign)

  • Yang Bo

    (University of Illinois at Urbana-Champaign)

  • Alberto Elosegui-Artola

    (Francis Crick Institute
    King’s College London)

  • Hua Wang

    (University of Illinois at Urbana-Champaign
    Cancer Center at Illinois (CCIL)
    University of Illinois at Urbana-Champaign
    University of Illinois at Urbana-Champaign)

Abstract

Dendritic cell (DC) vaccine was among the first FDA-approved cancer immunotherapies, but has been limited by the modest cytotoxic T lymphocyte (CTL) response and therapeutic efficacy. Here we report a facile metabolic labeling approach that enables targeted modulation of adoptively transferred DCs for developing enhanced DC vaccines. We show that metabolic glycan labeling can reduce the membrane mobility of DCs, which activates DCs and improves the antigen presentation and subsequent T cell priming property of DCs. Metabolic glycan labeling itself can enhance the antitumor efficacy of DC vaccines. In addition, the cell-surface chemical tags (e.g., azido groups) introduced via metabolic glycan labeling also enable in vivo conjugation of cytokines onto adoptively transferred DCs, which further enhances CTL response and antitumor efficacy. Our DC labeling and targeting technology provides a strategy to improve the therapeutic efficacy of DC vaccines, with minimal interference upon the clinical manufacturing process.

Suggested Citation

  • Joonsu Han & Rimsha Bhatta & Yusheng Liu & Yang Bo & Alberto Elosegui-Artola & Hua Wang, 2023. "Metabolic glycan labeling immobilizes dendritic cell membrane and enhances antitumor efficacy of dendritic cell vaccine," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40886-7
    DOI: 10.1038/s41467-023-40886-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-40886-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-40886-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jennifer A. Prescher & Danielle H. Dube & Carolyn R. Bertozzi, 2004. "Chemical remodelling of cell surfaces in living animals," Nature, Nature, vol. 430(7002), pages 873-877, August.
    2. Ira Mellman & George Coukos & Glenn Dranoff, 2011. "Cancer immunotherapy comes of age," Nature, Nature, vol. 480(7378), pages 480-489, December.
    3. Caleb R. Perez & Michele De Palma, 2019. "Engineering dendritic cell vaccines to improve cancer immunotherapy," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qiuyue Wu & Wencheng Wang & Chi Zhang & Zhenlong You & Yinyan Zeng & Yinzhu Lu & Suhui Zhang & Xingrui Li & Chaoyong Yang & Yanling Song, 2023. "Capturing nascent extracellular vesicles by metabolic glycan labeling-assisted microfluidics," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Jiangtao Gu & Raoqing Guo & Ligang Zhang & Ning Deng, 2022. "Construction of a Natural Human Fab Phage Antibody Library and Screening of Phage Antibody against PD-L1," International Journal of Sciences, Office ijSciences, vol. 11(02), pages 29-38, February.
    3. Luke J. Dowman & Sameer S. Kulkarni & Juan V. Alegre-Requena & Andrew M. Giltrap & Alexander R. Norman & Ashish Sharma & Liliana C. Gallegos & Angus S. Mackay & Adarshi P. Welegedara & Emma E. Watson , 2022. "Site-selective photocatalytic functionalization of peptides and proteins at selenocysteine," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. Sébastien Depienne & Mohammed Bouzelha & Emmanuelle Courtois & Karine Pavageau & Pierre-Alban Lalys & Maia Marchand & Dimitri Alvarez-Dorta & Steven Nedellec & Laura Marín-Fernández & Cyrille Grandjea, 2023. "Click-electrochemistry for the rapid labeling of virus, bacteria and cell surfaces," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Guangjun Bao & Xinyi Song & Yiping Li & Zeyuan He & Quan Zuo & Ruiyao E & Tingli Yu & Kai Li & Junqiu Xie & Wangsheng Sun & Rui Wang, 2024. "Orthogonal bioconjugation targeting cysteine-containing peptides and proteins using alkyl thianthrenium salts," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    6. Anne-Lise Marie & Yunfan Gao & Alexander R. Ivanov, 2024. "Native N-glycome profiling of single cells and ng-level blood isolates using label-free capillary electrophoresis-mass spectrometry," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    7. Maria Pia Lenza & Leire Egia-Mendikute & Asier Antoñana-Vildosola & Cátia O. Soares & Helena Coelho & Francisco Corzana & Alexandre Bosch & Prodhi Manisha & Jon Imanol Quintana & Iker Oyenarte & Luca , 2023. "Structural insights into Siglec-15 reveal glycosylation dependency for its interaction with T cells through integrin CD11b," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    8. Wenquan Ou & Samantha Stewart & Alisa White & Elyahb A. Kwizera & Jiangsheng Xu & Yuanzhang Fang & James G. Shamul & Changqing Xie & Suliat Nurudeen & Nikki P. Tirada & Xiongbin Lu & Katherine H. R. T, 2023. "In-situ cryo-immune engineering of tumor microenvironment with cold-responsive nanotechnology for cancer immunotherapy," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    9. Xiao Tian & Lingna Zheng & Changjiang Wang & Yida Han & Yujie Li & Tongxiao Cui & Jialin Liu & Chuanming Liu & Guogeng Jia & Lujie Yang & Yi Hsu & Chen Zeng & Lijun Ding & Chu Wang & Bo Cheng & Meng W, 2023. "Selenium-based metabolic oligosaccharide engineering strategy for quantitative glycan detection," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    10. Ghanizadeh, Mojtaba & Shariatpanahi, Seyed Peyman & Goliaei, Bahram & Rüegg, Curzio, 2021. "Mathematical modeling approach of cancer immunoediting reveals new insights in targeted-therapy and timing plan of cancer treatment," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    11. Jingchao Li & Yu Luo & Ziling Zeng & Dong Cui & Jiaguo Huang & Chenjie Xu & Liping Li & Kanyi Pu & Ruiping Zhang, 2022. "Precision cancer sono-immunotherapy using deep-tissue activatable semiconducting polymer immunomodulatory nanoparticles," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    12. Zhiren Wang & Wenpan Li & Yanhao Jiang & Tuyen Ba Tran & Leyla Estrella Cordova & Jinha Chung & Minhyeok Kim & Georg Wondrak & Jennifer Erdrich & Jianqin Lu, 2023. "Sphingomyelin-derived nanovesicles for the delivery of the IDO1 inhibitor epacadostat enhance metastatic and post-surgical melanoma immunotherapy," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    13. Yanjuan Huang & Zilin Guan & Xiuling Dai & Yifeng Shen & Qin Wei & Lingling Ren & Jingwen Jiang & Zhanghong Xiao & Yali Jiang & Di Liu & Zeqian Huang & Xiaoyu Xu & Yong Luo & Chunshun Zhao, 2021. "Engineered macrophages as near-infrared light activated drug vectors for chemo-photodynamic therapy of primary and bone metastatic breast cancer," Nature Communications, Nature, vol. 12(1), pages 1-22, December.
    14. Ikuko Taira & Yuichiro Taira & Masakazu Kato & Yoshimi Shimizu & Katuhiro Isoda & Hiromi Saitou & Isao Ishida, 2019. "Reviving Previous Therapeutics by Recombinant Anaerobic Bifidobacteria," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 12(5), pages 9596-9601, January.
    15. Dzana Dervovic & Ahmad A. Malik & Edward L. Y. Chen & Masahiro Narimatsu & Nina Adler & Somaieh Afiuni-Zadeh & Dagmar Krenbek & Sebastien Martinez & Ricky Tsai & Jonathan Boucher & Jacob M. Berman & K, 2023. "In vivo CRISPR screens reveal Serpinb9 and Adam2 as regulators of immune therapy response in lung cancer," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    16. Shenqiang Wang & Ying Zhang & Yanfang Wang & Yinxian Yang & Sheng Zhao & Tao Sheng & Yuqi Zhang & Zhen Gu & Jinqiang Wang & Jicheng Yu, 2023. "An in situ dual-anchoring strategy for enhanced immobilization of PD-L1 to treat autoimmune diseases," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    17. Nailin Yang & Fei Gong & Bo Liu & Yu Hao & Yu Chao & Huali Lei & Xiaoyuan Yang & Yuehan Gong & Xianwen Wang & Zhuang Liu & Liang Cheng, 2022. "Magnesium galvanic cells produce hydrogen and modulate the tumor microenvironment to inhibit cancer growth," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    18. Rimsha Bhatta & Joonsu Han & Yusheng Liu & Yang Bo & David Lee & Jiadiao Zhou & Yueji Wang & Erik Russell Nelson & Qian Chen & Xiaojia Shelly Zhang & Wael Hassaneen & Hua Wang, 2023. "Metabolic tagging of extracellular vesicles and development of enhanced extracellular vesicle based cancer vaccines," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40886-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.