IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-44118-w.html
   My bibliography  Save this article

Selenium-based metabolic oligosaccharide engineering strategy for quantitative glycan detection

Author

Listed:
  • Xiao Tian

    (Nanjing University)

  • Lingna Zheng

    (Chinese Academy of Sciences)

  • Changjiang Wang

    (Nanjing University)

  • Yida Han

    (Nanjing University)

  • Yujie Li

    (Nanjing University)

  • Tongxiao Cui

    (Nanjing University)

  • Jialin Liu

    (Peking University)

  • Chuanming Liu

    (Nanjing University Medical School)

  • Guogeng Jia

    (Peking University)

  • Lujie Yang

    (Southern University of Science and Technology)

  • Yi Hsu

    (Nanjing University)

  • Chen Zeng

    (Southern University of Science and Technology)

  • Lijun Ding

    (Nanjing University Medical School)

  • Chu Wang

    (Peking University)

  • Bo Cheng

    (Peking University)

  • Meng Wang

    (Chinese Academy of Sciences)

  • Ran Xie

    (Nanjing University)

Abstract

Metabolic oligosaccharide engineering (MOE) is a classical chemical approach to perturb, profile and perceive glycans in physiological systems, but probes upon bioorthogonal reaction require accessibility and the background signal readout makes it challenging to achieve glycan quantification. Here we develop SeMOE, a selenium-based metabolic oligosaccharide engineering strategy that concisely combines elemental analysis and MOE,enabling the mass spectrometric imaging of glycome. We also demonstrate that the new-to-nature SeMOE probes allow for detection, quantitative measurement and visualization of glycans in diverse biological contexts. We also show that chemical reporters on conventional MOE can be integrated into a bifunctional SeMOE probe to provide multimodality signal readouts. SeMOE thus provides a convenient and simplified method to explore the glyco-world.

Suggested Citation

  • Xiao Tian & Lingna Zheng & Changjiang Wang & Yida Han & Yujie Li & Tongxiao Cui & Jialin Liu & Chuanming Liu & Guogeng Jia & Lujie Yang & Yi Hsu & Chen Zeng & Lijun Ding & Chu Wang & Bo Cheng & Meng W, 2023. "Selenium-based metabolic oligosaccharide engineering strategy for quantitative glycan detection," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-44118-w
    DOI: 10.1038/s41467-023-44118-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-44118-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-44118-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jennifer A. Prescher & Danielle H. Dube & Carolyn R. Bertozzi, 2004. "Chemical remodelling of cell surfaces in living animals," Nature, Nature, vol. 430(7002), pages 873-877, August.
    2. Hai Liang & Kristen E. DeMeester & Ching-Wen Hou & Michelle A. Parent & Jeffrey L. Caplan & Catherine L. Grimes, 2017. "Metabolic labelling of the carbohydrate core in bacterial peptidoglycan and its applications," Nature Communications, Nature, vol. 8(1), pages 1-11, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qiuyue Wu & Wencheng Wang & Chi Zhang & Zhenlong You & Yinyan Zeng & Yinzhu Lu & Suhui Zhang & Xingrui Li & Chaoyong Yang & Yanling Song, 2023. "Capturing nascent extracellular vesicles by metabolic glycan labeling-assisted microfluidics," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Luke J. Dowman & Sameer S. Kulkarni & Juan V. Alegre-Requena & Andrew M. Giltrap & Alexander R. Norman & Ashish Sharma & Liliana C. Gallegos & Angus S. Mackay & Adarshi P. Welegedara & Emma E. Watson , 2022. "Site-selective photocatalytic functionalization of peptides and proteins at selenocysteine," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Sébastien Depienne & Mohammed Bouzelha & Emmanuelle Courtois & Karine Pavageau & Pierre-Alban Lalys & Maia Marchand & Dimitri Alvarez-Dorta & Steven Nedellec & Laura Marín-Fernández & Cyrille Grandjea, 2023. "Click-electrochemistry for the rapid labeling of virus, bacteria and cell surfaces," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Guangjun Bao & Xinyi Song & Yiping Li & Zeyuan He & Quan Zuo & Ruiyao E & Tingli Yu & Kai Li & Junqiu Xie & Wangsheng Sun & Rui Wang, 2024. "Orthogonal bioconjugation targeting cysteine-containing peptides and proteins using alkyl thianthrenium salts," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    5. Joonsu Han & Rimsha Bhatta & Yusheng Liu & Yang Bo & Alberto Elosegui-Artola & Hua Wang, 2023. "Metabolic glycan labeling immobilizes dendritic cell membrane and enhances antitumor efficacy of dendritic cell vaccine," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    6. Anne-Lise Marie & Yunfan Gao & Alexander R. Ivanov, 2024. "Native N-glycome profiling of single cells and ng-level blood isolates using label-free capillary electrophoresis-mass spectrometry," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    7. Shenqiang Wang & Ying Zhang & Yanfang Wang & Yinxian Yang & Sheng Zhao & Tao Sheng & Yuqi Zhang & Zhen Gu & Jinqiang Wang & Jicheng Yu, 2023. "An in situ dual-anchoring strategy for enhanced immobilization of PD-L1 to treat autoimmune diseases," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    8. Rimsha Bhatta & Joonsu Han & Yusheng Liu & Yang Bo & David Lee & Jiadiao Zhou & Yueji Wang & Erik Russell Nelson & Qian Chen & Xiaojia Shelly Zhang & Wael Hassaneen & Hua Wang, 2023. "Metabolic tagging of extracellular vesicles and development of enhanced extracellular vesicle based cancer vaccines," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-44118-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.