Reviving Previous Therapeutics by Recombinant Anaerobic Bifidobacteria
Author
Abstract
Suggested Citation
DOI: 10.26717/BJSTR.2019.12.002324
Download full text from publisher
References listed on IDEAS
- Ira Mellman & George Coukos & Glenn Dranoff, 2011. "Cancer immunotherapy comes of age," Nature, Nature, vol. 480(7378), pages 480-489, December.
- Regino Mercado-Lubo & Yuanwei Zhang & Liang Zhao & Kyle Rossi & Xiang Wu & Yekui Zou & Antonio Castillo & Jack Leonard & Rita Bortell & Dale L. Greiner & Leonard D. Shultz & Gang Han & Beth A. McCormi, 2016. "A Salmonella nanoparticle mimic overcomes multidrug resistance in tumours," Nature Communications, Nature, vol. 7(1), pages 1-13, November.
- Ikuko Taira & Yuichiro Taira & Masakazu Kato & Yoshimi Shimizu & Katuhiro Isoda & Hiromi Saitou & Isao Ishida, 2019. "Reviving Previous Therapeutics by Recombinant Anaerobic Bifidobacteria," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 12(5), pages 1-6, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Joonsu Han & Rimsha Bhatta & Yusheng Liu & Yang Bo & Alberto Elosegui-Artola & Hua Wang, 2023. "Metabolic glycan labeling immobilizes dendritic cell membrane and enhances antitumor efficacy of dendritic cell vaccine," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
- Ghanizadeh, Mojtaba & Shariatpanahi, Seyed Peyman & Goliaei, Bahram & Rüegg, Curzio, 2021. "Mathematical modeling approach of cancer immunoediting reveals new insights in targeted-therapy and timing plan of cancer treatment," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
- Nailin Yang & Fei Gong & Bo Liu & Yu Hao & Yu Chao & Huali Lei & Xiaoyuan Yang & Yuehan Gong & Xianwen Wang & Zhuang Liu & Liang Cheng, 2022. "Magnesium galvanic cells produce hydrogen and modulate the tumor microenvironment to inhibit cancer growth," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
- Maria Pia Lenza & Leire Egia-Mendikute & Asier Antoñana-Vildosola & Cátia O. Soares & Helena Coelho & Francisco Corzana & Alexandre Bosch & Prodhi Manisha & Jon Imanol Quintana & Iker Oyenarte & Luca , 2023. "Structural insights into Siglec-15 reveal glycosylation dependency for its interaction with T cells through integrin CD11b," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
- Dzana Dervovic & Ahmad A. Malik & Edward L. Y. Chen & Masahiro Narimatsu & Nina Adler & Somaieh Afiuni-Zadeh & Dagmar Krenbek & Sebastien Martinez & Ricky Tsai & Jonathan Boucher & Jacob M. Berman & K, 2023. "In vivo CRISPR screens reveal Serpinb9 and Adam2 as regulators of immune therapy response in lung cancer," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
- Wenquan Ou & Samantha Stewart & Alisa White & Elyahb A. Kwizera & Jiangsheng Xu & Yuanzhang Fang & James G. Shamul & Changqing Xie & Suliat Nurudeen & Nikki P. Tirada & Xiongbin Lu & Katherine H. R. T, 2023. "In-situ cryo-immune engineering of tumor microenvironment with cold-responsive nanotechnology for cancer immunotherapy," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
- Zhiren Wang & Wenpan Li & Yanhao Jiang & Tuyen Ba Tran & Leyla Estrella Cordova & Jinha Chung & Minhyeok Kim & Georg Wondrak & Jennifer Erdrich & Jianqin Lu, 2023. "Sphingomyelin-derived nanovesicles for the delivery of the IDO1 inhibitor epacadostat enhance metastatic and post-surgical melanoma immunotherapy," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
- Jiangtao Gu & Raoqing Guo & Ligang Zhang & Ning Deng, 2022. "Construction of a Natural Human Fab Phage Antibody Library and Screening of Phage Antibody against PD-L1," International Journal of Sciences, Office ijSciences, vol. 11(02), pages 29-38, February.
- Jingchao Li & Yu Luo & Ziling Zeng & Dong Cui & Jiaguo Huang & Chenjie Xu & Liping Li & Kanyi Pu & Ruiping Zhang, 2022. "Precision cancer sono-immunotherapy using deep-tissue activatable semiconducting polymer immunomodulatory nanoparticles," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
- Yanjuan Huang & Zilin Guan & Xiuling Dai & Yifeng Shen & Qin Wei & Lingling Ren & Jingwen Jiang & Zhanghong Xiao & Yali Jiang & Di Liu & Zeqian Huang & Xiaoyu Xu & Yong Luo & Chunshun Zhao, 2021. "Engineered macrophages as near-infrared light activated drug vectors for chemo-photodynamic therapy of primary and bone metastatic breast cancer," Nature Communications, Nature, vol. 12(1), pages 1-22, December.
More about this item
Keywords
Biomedical Sciences; Biomedical Research; Technical Research; Bifidobacterium; Drug Delivery System; Anti-Cancer Therapy; Immunotoxin; TRAIL;All these keywords.
JEL classification:
- R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
- Z0 - Other Special Topics - - General
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:abf:journl:v:12:y:2019:i:5:p:9596-9601. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Angela Roy (email available below). General contact details of provider: .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.