IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-40845-2.html
   My bibliography  Save this article

Epigenetic inheritance is unfaithful at intermediately methylated CpG sites

Author

Listed:
  • Amir D. Hay

    (University of Cambridge)

  • Noah J. Kessler

    (University of Cambridge)

  • Daniel Gebert

    (University of Cambridge)

  • Nozomi Takahashi

    (University of Cambridge)

  • Hugo Tavares

    (University of Cambridge)

  • Felipe K. Teixeira

    (University of Cambridge
    University of Cambridge)

  • Anne C. Ferguson-Smith

    (University of Cambridge)

Abstract

DNA methylation at the CpG dinucleotide is considered a stable epigenetic mark due to its presumed long-term inheritance through clonal expansion. Here, we perform high-throughput bisulfite sequencing on clonally derived somatic cell lines to quantitatively measure methylation inheritance at the nucleotide level. We find that although DNA methylation is generally faithfully maintained at hypo- and hypermethylated sites, this is not the case at intermediately methylated CpGs. Low fidelity intermediate methylation is interspersed throughout the genome and within genes with no or low transcriptional activity, and is not coordinately maintained between neighbouring sites. We determine that the probabilistic changes that occur at intermediately methylated sites are likely due to DNMT1 rather than DNMT3A/3B activity. The observed lack of clonal inheritance at intermediately methylated sites challenges the current epigenetic inheritance model and has direct implications for both the functional relevance and general interpretability of DNA methylation as a stable epigenetic mark.

Suggested Citation

  • Amir D. Hay & Noah J. Kessler & Daniel Gebert & Nozomi Takahashi & Hugo Tavares & Felipe K. Teixeira & Anne C. Ferguson-Smith, 2023. "Epigenetic inheritance is unfaithful at intermediately methylated CpG sites," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40845-2
    DOI: 10.1038/s41467-023-40845-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-40845-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-40845-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yin Shen & Feng Yue & David F. McCleary & Zhen Ye & Lee Edsall & Samantha Kuan & Ulrich Wagner & Jesse Dixon & Leonard Lee & Victor V. Lobanenkov & Bing Ren, 2012. "A map of the cis-regulatory sequences in the mouse genome," Nature, Nature, vol. 488(7409), pages 116-120, August.
    2. Paula Dominguez-Salas & Sophie E. Moore & Maria S. Baker & Andrew W. Bergen & Sharon E. Cox & Roger A. Dyer & Anthony J. Fulford & Yongtao Guan & Eleonora Laritsky & Matt J. Silver & Gary E. Swan & St, 2014. "Maternal nutrition at conception modulates DNA methylation of human metastable epialleles," Nature Communications, Nature, vol. 5(1), pages 1-7, September.
    3. Daniel M. Sapozhnikov & Moshe Szyf, 2021. "Unraveling the functional role of DNA demethylation at specific promoters by targeted steric blockage of DNA methyltransferase with CRISPR/dCas9," Nature Communications, Nature, vol. 12(1), pages 1-26, December.
    4. Yingfeng Li & Zhuqiang Zhang & Jiayu Chen & Wenqiang Liu & Weiyi Lai & Baodong Liu & Xiang Li & Liping Liu & Shaohua Xu & Qiang Dong & Mingzhu Wang & Xiaoya Duan & Jiajun Tan & Yong Zheng & Pumin Zhan, 2018. "Stella safeguards the oocyte methylome by preventing de novo methylation mediated by DNMT1," Nature, Nature, vol. 564(7734), pages 136-140, December.
    5. Thomas Dahlet & Andrea Argüeso Lleida & Hala Al Adhami & Michael Dumas & Ambre Bender & Richard P. Ngondo & Manon Tanguy & Judith Vallet & Ghislain Auclair & Anaïs F. Bardet & Michael Weber, 2020. "Genome-wide analysis in the mouse embryo reveals the importance of DNA methylation for transcription integrity," Nature Communications, Nature, vol. 11(1), pages 1-14, December.
    6. Zohar Shipony & Zohar Mukamel & Netta Mendelson Cohen & Gilad Landan & Elad Chomsky & Shlomit Reich Zeliger & Yael Chagit Fried & Elena Ainbinder & Nir Friedman & Amos Tanay, 2014. "Dynamic and static maintenance of epigenetic memory in pluripotent and somatic cells," Nature, Nature, vol. 513(7516), pages 115-119, September.
    7. Alexander Meissner & Tarjei S. Mikkelsen & Hongcang Gu & Marius Wernig & Jacob Hanna & Andrey Sivachenko & Xiaolan Zhang & Bradley E. Bernstein & Chad Nusbaum & David B. Jaffe & Andreas Gnirke & Rudol, 2008. "Genome-scale DNA methylation maps of pluripotent and differentiated cells," Nature, Nature, vol. 454(7205), pages 766-770, August.
    8. Julia Arand & David Spieler & Tommy Karius & Miguel R Branco & Daniela Meilinger & Alexander Meissner & Thomas Jenuwein & Guoliang Xu & Heinrich Leonhardt & Verena Wolf & Jörn Walter, 2012. "In Vivo Control of CpG and Non-CpG DNA Methylation by DNA Methyltransferases," PLOS Genetics, Public Library of Science, vol. 8(6), pages 1-11, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weina Zhang & Mingzhu Wang & Zhiwei Song & Qianzheng Fu & Jiayu Chen & Weitao Zhang & Shuai Gao & Xiaoxiang Sun & Guang Yang & Qiang Zhang & Jiaqing Yang & Huanyin Tang & Haiyan Wang & Xiaochen Kou & , 2023. "Farrerol directly activates the deubiqutinase UCHL3 to promote DNA repair and reprogramming when mediated by somatic cell nuclear transfer," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    2. Xuelong Yao & Zongyang Lu & Zhanying Feng & Lei Gao & Xin Zhou & Min Li & Suijuan Zhong & Qian Wu & Zhenbo Liu & Haofeng Zhang & Zeyuan Liu & Lizhi Yi & Tao Zhou & Xudong Zhao & Jun Zhang & Yong Wang , 2022. "Comparison of chromatin accessibility landscapes during early development of prefrontal cortex between rhesus macaque and human," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    3. Mian Umair Ahsan & Anagha Gouru & Joe Chan & Wanding Zhou & Kai Wang, 2024. "A signal processing and deep learning framework for methylation detection using Oxford Nanopore sequencing," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    4. Jinling Zhang & Xuebin Zhu & Yuhong Li & Lingyan Zhu & Shiming Li & Guoying Zheng & Qi Ren & Yonghong Xiao & Fumin Feng, 2016. "Correlation of CpG Island Methylation of the Cytochrome P450 2E1/2D6 Genes with Liver Injury Induced by Anti-Tuberculosis Drugs: A Nested Case-Control Study," IJERPH, MDPI, vol. 13(8), pages 1-9, August.
    5. Wei Vivian Li & Yiling Chen & Jingyi Jessica Li, 2017. "TROM: A Testing-Based Method for Finding Transcriptomic Similarity of Biological Samples," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 9(1), pages 105-136, June.
    6. Andrea Lauria & Guohua Meng & Valentina Proserpio & Stefania Rapelli & Mara Maldotti & Isabelle Laurence Polignano & Francesca Anselmi & Danny Incarnato & Anna Krepelova & Daniela Donna & Chiara Levra, 2023. "DNMT3B supports meso-endoderm differentiation from mouse embryonic stem cells," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    7. Sandhya Malla & Kanchan Kumari & Carlos A. García-Prieto & Jonatan Caroli & Anna Nordin & Trinh T. T. Phan & Devi Prasad Bhattarai & Carlos Martinez-Gamero & Eshagh Dorafshan & Stephanie Stransky & Da, 2024. "The scaffolding function of LSD1 controls DNA methylation in mouse ESCs," Nature Communications, Nature, vol. 15(1), pages 1-24, December.
    8. Allegra Angeloni & Skye Fissette & Deniz Kaya & Jillian M. Hammond & Hasindu Gamaarachchi & Ira W. Deveson & Robert J. Klose & Weiming Li & Xiaotian Zhang & Ozren Bogdanovic, 2024. "Extensive DNA methylome rearrangement during early lamprey embryogenesis," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    9. Steffen Mueller & Gail Dennison & Shujun Liu, 2021. "An Assessment on Ethanol-Blended Gasoline/Diesel Fuels on Cancer Risk and Mortality," IJERPH, MDPI, vol. 18(13), pages 1-23, June.
    10. Graeme J. Thorn & Christopher T. Clarkson & Anne Rademacher & Hulkar Mamayusupova & Gunnar Schotta & Karsten Rippe & Vladimir B. Teif, 2022. "DNA sequence-dependent formation of heterochromatin nanodomains," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    11. Albert Stuart Reece & Gary Kenneth Hulse, 2022. "Epigenomic and Other Evidence for Cannabis-Induced Aging Contextualized in a Synthetic Epidemiologic Overview of Cannabinoid-Related Teratogenesis and Cannabinoid-Related Carcinogenesis," IJERPH, MDPI, vol. 19(24), pages 1-57, December.
    12. Ravneet Jaura & Ssu-Yu Yeh & Kaitlin N. Montanera & Alyssa Ialongo & Zobia Anwar & Yiming Lu & Kavindu Puwakdandawa & Ho Sung Rhee, 2022. "Extended intergenic DNA contributes to neuron-specific expression of neighboring genes in the mammalian nervous system," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    13. Beatriz del Blanco & Sergio Niñerola & Ana M. Martín-González & Juan Paraíso-Luna & Minji Kim & Rafael Muñoz-Viana & Carina Racovac & Jose V. Sanchez-Mut & Yijun Ruan & Ángel Barco, 2024. "Kdm1a safeguards the topological boundaries of PRC2-repressed genes and prevents aging-related euchromatinization in neurons," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    14. Hanhan Ning & Shan Huang & Yang Lei & Renyong Zhi & Han Yan & Jiaxing Jin & Zhenyu Hu & Kaimin Guo & Jinhua Liu & Jie Yang & Zhe Liu & Yi Ba & Xin Gao & Deqing Hu, 2022. "Enhancer decommissioning by MLL4 ablation elicits dsRNA-interferon signaling and GSDMD-mediated pyroptosis to potentiate anti-tumor immunity," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    15. Kaja Kostyrko & Marta Román & Alex G. Lee & David R. Simpson & Phuong T. Dinh & Stanley G. Leung & Kieren D. Marini & Marcus R. Kelly & Joshua Broyde & Andrea Califano & Peter K. Jackson & E. Alejandr, 2023. "UHRF1 is a mediator of KRAS driven oncogenesis in lung adenocarcinoma," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    16. Renata Bordeira-Carriço & Joana Teixeira & Marta Duque & Mafalda Galhardo & Diogo Ribeiro & Rafael D. Acemel & Panos. N. Firbas & Juan J. Tena & Ana Eufrásio & Joana Marques & Fábio J. Ferreira & Telm, 2022. "Multidimensional chromatin profiling of zebrafish pancreas to uncover and investigate disease-relevant enhancers," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    17. Yurika Matsui & Mohamed Nadhir Djekidel & Katherine Lindsay & Parimal Samir & Nina Connolly & Gang Wu & Xiaoyang Yang & Yiping Fan & Beisi Xu & Jamy C. Peng, 2023. "SNIP1 and PRC2 coordinate cell fates of neural progenitors during brain development," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    18. Uri Weissbein & Omer Plotnik & Dan Vershkov & Nissim Benvenisty, 2017. "Culture-induced recurrent epigenetic aberrations in human pluripotent stem cells," PLOS Genetics, Public Library of Science, vol. 13(8), pages 1-16, August.
    19. Tomas Zelenka & Antonios Klonizakis & Despina Tsoukatou & Dionysios-Alexandros Papamatheakis & Sören Franzenburg & Petros Tzerpos & Ioannis-Rafail Tzonevrakis & George Papadogkonas & Manouela Kapsetak, 2022. "The 3D enhancer network of the developing T cell genome is shaped by SATB1," Nature Communications, Nature, vol. 13(1), pages 1-22, December.
    20. Yu Chen & Mengjiao Luo & Haixia Tu & Yaling Qi & Yueshuai Guo & Xiangzheng Zhang & Yiqiang Cui & Mengmeng Gao & Xin Zhou & Tianyu Zhu & Hui Zhu & Chenghao Situ & Yan Li & Xuejiang Guo, 2024. "STYXL1 regulates CCT complex assembly and flagellar tubulin folding in sperm formation," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40845-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.