IDEAS home Printed from https://ideas.repec.org/a/plo/pgen00/1002750.html
   My bibliography  Save this article

In Vivo Control of CpG and Non-CpG DNA Methylation by DNA Methyltransferases

Author

Listed:
  • Julia Arand
  • David Spieler
  • Tommy Karius
  • Miguel R Branco
  • Daniela Meilinger
  • Alexander Meissner
  • Thomas Jenuwein
  • Guoliang Xu
  • Heinrich Leonhardt
  • Verena Wolf
  • Jörn Walter

Abstract

The enzymatic control of the setting and maintenance of symmetric and non-symmetric DNA methylation patterns in a particular genome context is not well understood. Here, we describe a comprehensive analysis of DNA methylation patterns generated by high resolution sequencing of hairpin-bisulfite amplicons of selected single copy genes and repetitive elements (LINE1, B1, IAP-LTR-retrotransposons, and major satellites). The analysis unambiguously identifies a substantial amount of regional incomplete methylation maintenance, i.e. hemimethylated CpG positions, with variant degrees among cell types. Moreover, non-CpG cytosine methylation is confined to ESCs and exclusively catalysed by Dnmt3a and Dnmt3b. This sequence position–, cell type–, and region-dependent non-CpG methylation is strongly linked to neighboring CpG methylation and requires the presence of Dnmt3L. The generation of a comprehensive data set of 146,000 CpG dyads was used to apply and develop parameter estimated hidden Markov models (HMM) to calculate the relative contribution of DNA methyltransferases (Dnmts) for de novo and maintenance DNA methylation. The comparative modelling included wild-type ESCs and mutant ESCs deficient for Dnmt1, Dnmt3a, Dnmt3b, or Dnmt3a/3b, respectively. The HMM analysis identifies a considerable de novo methylation activity for Dnmt1 at certain repetitive elements and single copy sequences. Dnmt3a and Dnmt3b contribute de novo function. However, both enzymes are also essential to maintain symmetrical CpG methylation at distinct repetitive and single copy sequences in ESCs. Author Summary: DNA methylation is a stable covalent epigenetic modification of cytosines mostly confined to CpG-dinucleotides in mammals. In general, it is associated with silencing of genomic DNA regions. Three catalytically active DNA methyltransferases (Dnmts) set and maintain CpG methylation in cooperation with other (co-)factors. The in vivo contribution of the Dnmts to maintain CpG and non-CpG methylation following rounds of DNA replication are not well understood, particularly since in vivo DNA methylation patterns can be highly dynamic. In our work, we use ultradeep sequencing to determine the methylation status of both DNA strands in ESCs depleted for Dnmts 1, 3a, 3b, and 3L, respectively. Using hidden Markov models, we calculate the relative contribution of each of the enzymes for the maintenance of DNA methylation patterns using parameter estimated fitting. While in general the modelling supports a classification of Dnmts into maintenance and de novo functions, it argues against a strict enzyme specific functional categorisation. We observe evidence for a context-dependent contribution of Dnmts to set and maintain CpG and non-CpG methylation at distinct classes of repetitive elements and selected single copy genes. We furthermore unambiguously identify Dnmt3a/3b and 3L dependent non-CpG methylation at specific sequence positions and confined to ESCs.

Suggested Citation

  • Julia Arand & David Spieler & Tommy Karius & Miguel R Branco & Daniela Meilinger & Alexander Meissner & Thomas Jenuwein & Guoliang Xu & Heinrich Leonhardt & Verena Wolf & Jörn Walter, 2012. "In Vivo Control of CpG and Non-CpG DNA Methylation by DNA Methyltransferases," PLOS Genetics, Public Library of Science, vol. 8(6), pages 1-11, June.
  • Handle: RePEc:plo:pgen00:1002750
    DOI: 10.1371/journal.pgen.1002750
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1002750
    Download Restriction: no

    File URL: https://journals.plos.org/plosgenetics/article/file?id=10.1371/journal.pgen.1002750&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pgen.1002750?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Déborah Bourc'his & Timothy H. Bestor, 2004. "Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L," Nature, Nature, vol. 431(7004), pages 96-99, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Steffen Mueller & Gail Dennison & Shujun Liu, 2021. "An Assessment on Ethanol-Blended Gasoline/Diesel Fuels on Cancer Risk and Mortality," IJERPH, MDPI, vol. 18(13), pages 1-23, June.
    2. Naoki Kubo & Ryuji Uehara & Shuhei Uemura & Hiroaki Ohishi & Kenjiro Shirane & Hiroyuki Sasaki, 2024. "Combined and differential roles of ADD domains of DNMT3A and DNMT3L on DNA methylation landscapes in mouse germ cells," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Amir D. Hay & Noah J. Kessler & Daniel Gebert & Nozomi Takahashi & Hugo Tavares & Felipe K. Teixeira & Anne C. Ferguson-Smith, 2023. "Epigenetic inheritance is unfaithful at intermediately methylated CpG sites," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Pascal Giehr & Charalampos Kyriakopoulos & Gabriella Ficz & Verena Wolf & Jörn Walter, 2016. "The Influence of Hydroxylation on Maintaining CpG Methylation Patterns: A Hidden Markov Model Approach," PLOS Computational Biology, Public Library of Science, vol. 12(5), pages 1-16, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shubha P. Kale & Lakisha Moore & Prescott L. Deininger & Astrid M. Roy-Engel, 2005. "Heavy Metals Stimulate Human LINE-1 Retrotransposition," IJERPH, MDPI, vol. 2(1), pages 1-10, April.
    2. Anthony V Furano & Charlie E Jones & Vipul Periwal & Kathryn E Callahan & Jean-Claude Walser & Pamela R Cook, 2020. "Cryptic genetic variation enhances primate L1 retrotransposon survival by enlarging the functional coiled coil sequence space of ORF1p," PLOS Genetics, Public Library of Science, vol. 16(8), pages 1-19, August.
    3. Patricia Gerdes & Sue Mei Lim & Adam D. Ewing & Michael R. Larcombe & Dorothy Chan & Francisco J. Sanchez-Luque & Lucinda Walker & Alexander L. Carleton & Cini James & Anja S. Knaupp & Patricia E. Car, 2022. "Retrotransposon instability dominates the acquired mutation landscape of mouse induced pluripotent stem cells," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    4. Linfeng Gao & Yiran Guo & Mahamaya Biswal & Jiuwei Lu & Jiekai Yin & Jian Fang & Xinyi Chen & Zengyu Shao & Mengjiang Huang & Yinsheng Wang & Gang Greg Wang & Jikui Song, 2022. "Structure of DNMT3B homo-oligomer reveals vulnerability to impairment by ICF mutations," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Ahmad Luqman-Fatah & Yuzo Watanabe & Kazuko Uno & Fuyuki Ishikawa & John V. Moran & Tomoichiro Miyoshi, 2023. "The interferon stimulated gene-encoded protein HELZ2 inhibits human LINE-1 retrotransposition and LINE-1 RNA-mediated type I interferon induction," Nature Communications, Nature, vol. 14(1), pages 1-26, December.
    6. Pascal Giehr & Charalampos Kyriakopoulos & Gabriella Ficz & Verena Wolf & Jörn Walter, 2016. "The Influence of Hydroxylation on Maintaining CpG Methylation Patterns: A Hidden Markov Model Approach," PLOS Computational Biology, Public Library of Science, vol. 12(5), pages 1-16, May.
    7. Ariane Lismer & Sarah Kimmins, 2023. "Emerging evidence that the mammalian sperm epigenome serves as a template for embryo development," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    8. Zhengyi Zhen & Yu Chen & Haiyan Wang & Huanyin Tang & Haiping Zhang & Haipeng Liu & Ying Jiang & Zhiyong Mao, 2023. "Nuclear cGAS restricts L1 retrotransposition by promoting TRIM41-mediated ORF2p ubiquitination and degradation," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    9. Jiuwei Lu & Yiran Guo & Jiekai Yin & Jianbin Chen & Yinsheng Wang & Gang Greg Wang & Jikui Song, 2024. "Structure-guided functional suppression of AML-associated DNMT3A hotspot mutations," Nature Communications, Nature, vol. 15(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pgen00:1002750. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosgenetics (email available below). General contact details of provider: https://journals.plos.org/plosgenetics/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.