IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-29551-7.html
   My bibliography  Save this article

Multidimensional chromatin profiling of zebrafish pancreas to uncover and investigate disease-relevant enhancers

Author

Listed:
  • Renata Bordeira-Carriço

    (Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto
    Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto)

  • Joana Teixeira

    (Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto
    Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto
    Doctoral program in Molecular and Cell Biology (MCbiology), ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto)

  • Marta Duque

    (Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto
    Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto
    Doctoral program in Molecular and Cell Biology (MCbiology), ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto)

  • Mafalda Galhardo

    (Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto
    Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto
    Instituto de Ciências, Tecnologias e Agroambiente (CIBIO), Universidade do Porto)

  • Diogo Ribeiro

    (Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto
    Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto)

  • Rafael D. Acemel

    (Centro Andaluz de Biología del Desarrollo (CABD), Universidad Pablo de Olavide)

  • Panos. N. Firbas

    (Centro Andaluz de Biología del Desarrollo (CABD), Universidad Pablo de Olavide)

  • Juan J. Tena

    (Centro Andaluz de Biología del Desarrollo (CABD), Universidad Pablo de Olavide)

  • Ana Eufrásio

    (Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto
    Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto
    Doctoral program in Molecular and Cell Biology (MCbiology), ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto)

  • Joana Marques

    (Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto
    Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto)

  • Fábio J. Ferreira

    (Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto
    Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto
    Doctoral program in Areas of Basic and Applied Biology (GABBA), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto)

  • Telmo Freitas

    (Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto
    Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto)

  • Fátima Carneiro

    (Faculdade de Medicina da Universidade do Porto (FMUP)
    Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP))

  • José Luís Goméz-Skarmeta

    (Centro Andaluz de Biología del Desarrollo (CABD), Universidad Pablo de Olavide)

  • José Bessa

    (Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto
    Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto)

Abstract

The pancreas is a central organ for human diseases. Most alleles uncovered by genome-wide association studies of pancreatic dysfunction traits overlap with non-coding sequences of DNA. Many contain epigenetic marks of cis-regulatory elements active in pancreatic cells, suggesting that alterations in these sequences contribute to pancreatic diseases. Animal models greatly help to understand the role of non-coding alterations in disease. However, interspecies identification of equivalent cis-regulatory elements faces fundamental challenges, including lack of sequence conservation. Here we combine epigenetic assays with reporter assays in zebrafish and human pancreatic cells to identify interspecies functionally equivalent cis-regulatory elements, regardless of sequence conservation. Among other potential disease-relevant enhancers, we identify a zebrafish ptf1a distal-enhancer whose deletion causes pancreatic agenesis, a phenotype previously found to be induced by mutations in a distal-enhancer of PTF1A in humans, further supporting the causality of this condition in vivo. This approach helps to uncover interspecies functionally equivalent cis-regulatory elements and their potential role in human disease.

Suggested Citation

  • Renata Bordeira-Carriço & Joana Teixeira & Marta Duque & Mafalda Galhardo & Diogo Ribeiro & Rafael D. Acemel & Panos. N. Firbas & Juan J. Tena & Ana Eufrásio & Joana Marques & Fábio J. Ferreira & Telm, 2022. "Multidimensional chromatin profiling of zebrafish pancreas to uncover and investigate disease-relevant enhancers," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29551-7
    DOI: 10.1038/s41467-022-29551-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-29551-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-29551-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yin Shen & Feng Yue & David F. McCleary & Zhen Ye & Lee Edsall & Samantha Kuan & Ulrich Wagner & Jesse Dixon & Leonard Lee & Victor V. Lobanenkov & Bing Ren, 2012. "A map of the cis-regulatory sequences in the mouse genome," Nature, Nature, vol. 488(7409), pages 116-120, August.
    2. David U. Gorkin & Iros Barozzi & Yuan Zhao & Yanxiao Zhang & Hui Huang & Ah Young Lee & Bin Li & Joshua Chiou & Andre Wildberg & Bo Ding & Bo Zhang & Mengchi Wang & J. Seth Strattan & Jean M. Davidson, 2020. "Author Correction: An atlas of dynamic chromatin landscapes in mouse fetal development," Nature, Nature, vol. 586(7831), pages 31-31, October.
    3. David U. Gorkin & Iros Barozzi & Yuan Zhao & Yanxiao Zhang & Hui Huang & Ah Young Lee & Bin Li & Joshua Chiou & Andre Wildberg & Bo Ding & Bo Zhang & Mengchi Wang & J. Seth Strattan & Jean M. Davidson, 2020. "An atlas of dynamic chromatin landscapes in mouse fetal development," Nature, Nature, vol. 583(7818), pages 744-751, July.
    4. Alvaro Rada-Iglesias & Ruchi Bajpai & Tomek Swigut & Samantha A. Brugmann & Ryan A. Flynn & Joanna Wysocka, 2011. "A unique chromatin signature uncovers early developmental enhancers in humans," Nature, Nature, vol. 470(7333), pages 279-283, February.
    5. Timothy Bailey & Pawel Krajewski & Istvan Ladunga & Celine Lefebvre & Qunhua Li & Tao Liu & Pedro Madrigal & Cenny Taslim & Jie Zhang, 2013. "Practical Guidelines for the Comprehensive Analysis of ChIP-seq Data," PLOS Computational Biology, Public Library of Science, vol. 9(11), pages 1-8, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhangyuan Pan & Yuelin Yao & Hongwei Yin & Zexi Cai & Ying Wang & Lijing Bai & Colin Kern & Michelle Halstead & Ganrea Chanthavixay & Nares Trakooljul & Klaus Wimmers & Goutam Sahana & Guosheng Su & M, 2021. "Pig genome functional annotation enhances the biological interpretation of complex traits and human disease," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    2. Jennifer P. Nguyen & Timothy D. Arthur & Kyohei Fujita & Bianca M. Salgado & Margaret K. R. Donovan & Hiroko Matsui & Ji Hyun Kim & Agnieszka D’Antonio-Chronowska & Matteo D’Antonio & Kelly A. Frazer, 2023. "eQTL mapping in fetal-like pancreatic progenitor cells reveals early developmental insights into diabetes risk," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    3. Ze Yan & Ji Yang & Wen-Tian Wei & Ming-Liang Zhou & Dong-Xin Mo & Xing Wan & Rui Ma & Mei-Ming Wu & Jia-Hui Huang & Ya-Jing Liu & Feng-Hua Lv & Meng-Hua Li, 2024. "A time-resolved multi-omics atlas of transcriptional regulation in response to high-altitude hypoxia across whole-body tissues," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    4. Sudha Sunil Rajderkar & Kitt Paraiso & Maria Luisa Amaral & Michael Kosicki & Laura E. Cook & Fabrice Darbellay & Cailyn H. Spurrell & Marco Osterwalder & Yiwen Zhu & Han Wu & Sarah Yasmeen Afzal & Ma, 2024. "Dynamic enhancer landscapes in human craniofacial development," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    5. Adriana Arneson & Amin Haghani & Michael J. Thompson & Matteo Pellegrini & Soo Bin Kwon & Ha Vu & Emily Maciejewski & Mingjia Yao & Caesar Z. Li & Ake T. Lu & Marco Morselli & Liudmilla Rubbi & Bret B, 2022. "A mammalian methylation array for profiling methylation levels at conserved sequences," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    6. Phoebe Lut Fei Tam & Ming Fung Cheung & Lu Yan Chan & Danny Leung, 2024. "Cell-type differential targeting of SETDB1 prevents aberrant CTCF binding, chromatin looping, and cis-regulatory interactions," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    7. Ye Cai & Huifen Cao & Fang Wang & Yufei Zhang & Philipp Kapranov, 2022. "Complex genomic patterns of abasic sites in mammalian DNA revealed by a high-resolution SSiNGLe-AP method," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    8. Yael Aylon & Noa Furth & Giuseppe Mallel & Gilgi Friedlander & Nishanth Belugali Nataraj & Meng Dong & Ori Hassin & Rawan Zoabi & Benjamin Cohen & Vanessa Drendel & Tomer Meir Salame & Saptaparna Mukh, 2022. "Breast cancer plasticity is restricted by a LATS1-NCOR1 repressive axis," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    9. Christopher T. Rhodes & Joyce J. Thompson & Apratim Mitra & Dhanya Asokumar & Dongjin R. Lee & Daniel J. Lee & Yajun Zhang & Eva Jason & Ryan K. Dale & Pedro P. Rocha & Timothy J. Petros, 2022. "An epigenome atlas of neural progenitors within the embryonic mouse forebrain," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    10. Shigekazu Murakami & Shannon M. White & Alec T. McIntosh & Chan D. K. Nguyen & Chunling Yi, 2023. "Spontaneously evolved progenitor niches escape Yap oncogene addiction in advanced pancreatic ductal adenocarcinomas," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    11. Victor Lopez Soriano & Alfredo Dueñas Rey & Rajarshi Mukherjee & Frauke Coppieters & Miriam Bauwens & Andy Willaert & Elfride De Baere, 2024. "Multi-omics analysis in human retina uncovers ultraconserved cis-regulatory elements at rare eye disease loci," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    12. Pedro Madrigal & Siwei Deng & Yuliang Feng & Stefania Militi & Kim Jee Goh & Reshma Nibhani & Rodrigo Grandy & Anna Osnato & Daniel Ortmann & Stephanie Brown & Siim Pauklin, 2023. "Epigenetic and transcriptional regulations prime cell fate before division during human pluripotent stem cell differentiation," Nature Communications, Nature, vol. 14(1), pages 1-23, December.
    13. Raquel Rouco & Olimpia Bompadre & Antonella Rauseo & Olivier Fazio & Rodrigue Peraldi & Fabrizio Thorel & Guillaume Andrey, 2021. "Cell-specific alterations in Pitx1 regulatory landscape activation caused by the loss of a single enhancer," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    14. Graeme J. Thorn & Christopher T. Clarkson & Anne Rademacher & Hulkar Mamayusupova & Gunnar Schotta & Karsten Rippe & Vladimir B. Teif, 2022. "DNA sequence-dependent formation of heterochromatin nanodomains," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    15. Yanting Luo & Jianlin He & Xiguang Xu & Ming-an Sun & Xiaowei Wu & Xuemei Lu & Hehuang Xie, 2018. "Integrative single-cell omics analyses reveal epigenetic heterogeneity in mouse embryonic stem cells," PLOS Computational Biology, Public Library of Science, vol. 14(3), pages 1-21, March.
    16. Dongmei Wang & Haimin Li & Navdeep S. Chandel & Yali Dou & Rui Yi, 2023. "MOF-mediated histone H4 Lysine 16 acetylation governs mitochondrial and ciliary functions by controlling gene promoters," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    17. Tomas Zelenka & Antonios Klonizakis & Despina Tsoukatou & Dionysios-Alexandros Papamatheakis & Sören Franzenburg & Petros Tzerpos & Ioannis-Rafail Tzonevrakis & George Papadogkonas & Manouela Kapsetak, 2022. "The 3D enhancer network of the developing T cell genome is shaped by SATB1," Nature Communications, Nature, vol. 13(1), pages 1-22, December.
    18. Michael S. Werner & Tobias Loschko & Thomas King & Shelley Reich & Tobias Theska & Mirita Franz-Wachtel & Boris Macek & Ralf J. Sommer, 2023. "Histone 4 lysine 5/12 acetylation enables developmental plasticity of Pristionchus mouth form," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    19. Yu Chen & Mengjiao Luo & Haixia Tu & Yaling Qi & Yueshuai Guo & Xiangzheng Zhang & Yiqiang Cui & Mengmeng Gao & Xin Zhou & Tianyu Zhu & Hui Zhu & Chenghao Situ & Yan Li & Xuejiang Guo, 2024. "STYXL1 regulates CCT complex assembly and flagellar tubulin folding in sperm formation," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    20. Xuemeng Zhou & Tsz Wing Sam & Ah Young Lee & Danny Leung, 2021. "Mouse strain-specific polymorphic provirus functions as cis-regulatory element leading to epigenomic and transcriptomic variations," Nature Communications, Nature, vol. 12(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29551-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.