Genome-wide analysis in the mouse embryo reveals the importance of DNA methylation for transcription integrity
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-020-16919-w
Download full text from publisher
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Simon Andrews & Christel Krueger & Maravillas Mellado-Lopez & Myriam Hemberger & Wendy Dean & Vicente Perez-Garcia & Courtney W. Hanna, 2023. "Mechanisms and function of de novo DNA methylation in placental development reveals an essential role for DNMT3B," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
- Ariane Lismer & Sarah Kimmins, 2023. "Emerging evidence that the mammalian sperm epigenome serves as a template for embryo development," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
- Qing Li & Jiansen Lu & Xidi Yin & Yunjian Chang & Chao Wang & Meng Yan & Li Feng & Yanbo Cheng & Yun Gao & Beiying Xu & Yao Zhang & Yingyi Wang & Guizhong Cui & Luang Xu & Yidi Sun & Rong Zeng & Yixue, 2023. "Base editing-mediated one-step inactivation of the Dnmt gene family reveals critical roles of DNA methylation during mouse gastrulation," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
- Andrea Lauria & Guohua Meng & Valentina Proserpio & Stefania Rapelli & Mara Maldotti & Isabelle Laurence Polignano & Francesca Anselmi & Danny Incarnato & Anna Krepelova & Daniela Donna & Chiara Levra, 2023. "DNMT3B supports meso-endoderm differentiation from mouse embryonic stem cells," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
- Kentaro Mochizuki & Jafar Sharif & Kenjiro Shirane & Kousuke Uranishi & Aaron B. Bogutz & Sanne M. Janssen & Ayumu Suzuki & Akihiko Okuda & Haruhiko Koseki & Matthew C. Lorincz, 2021. "Repression of germline genes by PRC1.6 and SETDB1 in the early embryo precedes DNA methylation-mediated silencing," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
- Amir D. Hay & Noah J. Kessler & Daniel Gebert & Nozomi Takahashi & Hugo Tavares & Felipe K. Teixeira & Anne C. Ferguson-Smith, 2023. "Epigenetic inheritance is unfaithful at intermediately methylated CpG sites," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-16919-w. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.