IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-40007-4.html
   My bibliography  Save this article

Covalent organic frameworks for direct photosynthesis of hydrogen peroxide from water, air and sunlight

Author

Listed:
  • Fuyang Liu

    (Peking University
    Peking University
    Peking University)

  • Peng Zhou

    (Peking University Shenzhen Graduate School)

  • Yanghui Hou

    (Peking University
    Peking University
    Peking University)

  • Hao Tan

    (Peking University)

  • Yin Liang

    (Peking University)

  • Jialiang Liang

    (Chongqing University)

  • Qing Zhang

    (Peking University)

  • Shaojun Guo

    (Peking University)

  • Meiping Tong

    (Peking University
    Peking University
    Peking University)

  • Jinren Ni

    (Peking University
    Peking University
    Peking University)

Abstract

Solar-driven photosynthesis is a sustainable process for the production of hydrogen peroxide, the efficiency of which is plagued by side reactions. Metal-free covalent organic frameworks (COFs) that can form suitable intermediates and inhibit side reactions show great promise to photo-synthesize H2O2. However, the insufficient formation and separation/transfer of photogenerated charges in such materials restricts the efficiency of H2O2 production. Herein, we provide a strategy for the design of donor-acceptor COFs to greatly boost H2O2 photosynthesis. We demonstrate that the optimal intramolecular polarity of COFs, achieved by using suitable amounts of phenyl groups as electron donors, can maximize the free charge generation, which leads to high H2O2 yield rates (605 μmol g−1 h−1) from water, oxygen and visible light without sacrificial agents. Combining in-situ characterization with computational calculations, we describe how the triazine N-sites with optimal N 2p states play a crucial role in H2O activation and selective oxidation into H2O2. We further experimentally demonstrate that H2O2 can be efficiently produced in tap, river or sea water with natural sunlight and air for water decontamination.

Suggested Citation

  • Fuyang Liu & Peng Zhou & Yanghui Hou & Hao Tan & Yin Liang & Jialiang Liang & Qing Zhang & Shaojun Guo & Meiping Tong & Jinren Ni, 2023. "Covalent organic frameworks for direct photosynthesis of hydrogen peroxide from water, air and sunlight," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40007-4
    DOI: 10.1038/s41467-023-40007-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-40007-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-40007-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Peng Zhou & Hui Chen & Yuguang Chao & Qinghua Zhang & Weiyu Zhang & Fan Lv & Lin Gu & Qiang Zhao & Ning Wang & Jinshu Wang & Shaojun Guo, 2021. "Single-atom Pt-I3 sites on all-inorganic Cs2SnI6 perovskite for efficient photocatalytic hydrogen production," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    2. Tae Wu Kim & Sunhong Jun & Yoonhoo Ha & Rajesh K. Yadav & Abhishek Kumar & Chung-Yul Yoo & Inhwan Oh & Hyung-Kyu Lim & Jae Won Shin & Ryong Ryoo & Hyungjun Kim & Jeongho Kim & Jin-Ook Baeg & Hyotcherl, 2019. "Ultrafast charge transfer coupled with lattice phonons in two-dimensional covalent organic frameworks," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    3. Qingyao Wu & Jingjing Cao & Xiao Wang & Yan Liu & Yajie Zhao & Hui Wang & Yang Liu & Hui Huang & Fan Liao & Mingwang Shao & Zhenghui Kang, 2021. "Author Correction: A metal-free photocatalyst for highly efficient hydrogen peroxide photoproduction in real seawater," Nature Communications, Nature, vol. 12(1), pages 1-2, December.
    4. Yimeng Li & Li Yang & Huijie He & Lei Sun & Honglei Wang & Xu Fang & Yanliang Zhao & Daoyuan Zheng & Yu Qi & Zhen Li & Weiqiao Deng, 2022. "In situ photodeposition of platinum clusters on a covalent organic framework for photocatalytic hydrogen production," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Shuai Bi & Can Yang & Wenbei Zhang & Junsong Xu & Lingmei Liu & Dongqing Wu & Xinchen Wang & Yu Han & Qifeng Liang & Fan Zhang, 2019. "Two-dimensional semiconducting covalent organic frameworks via condensation at arylmethyl carbon atoms," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    6. Xinle Li & Changlin Zhang & Songliang Cai & Xiaohe Lei & Virginia Altoe & Fang Hong & Jeffrey J. Urban & Jim Ciston & Emory M. Chan & Yi Liu, 2018. "Facile transformation of imine covalent organic frameworks into ultrastable crystalline porous aromatic frameworks," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    7. Qingyao Wu & Jingjing Cao & Xiao Wang & Yan Liu & Yajie Zhao & Hui Wang & Yang Liu & Hui Huang & Fan Liao & Mingwang Shao & Zhenghui Kang, 2021. "A metal-free photocatalyst for highly efficient hydrogen peroxide photoproduction in real seawater," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yanghui Hou & Peng Zhou & Fuyang Liu & Ke Tong & Yanyu Lu & Zhengmao Li & Jialiang Liang & Meiping Tong, 2024. "Rigid covalent organic frameworks with thiazole linkage to boost oxygen activation for photocatalytic water purification," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Ming-Yan Lan & Yu-Hang Li & Chong-Chen Wang & Xin-Jie Li & Jiazhen Cao & Linghui Meng & Shuai Gao & Yuhui Ma & Haodong Ji & Mingyang Xing, 2024. "Multi-channel electron transfer induced by polyvanadate in metal-organic framework for boosted peroxymonosulfate activation," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chengxin Zhou & Jian Gao & Yunlong Deng & Ming Wang & Dan Li & Chuan Xia, 2023. "Electric double layer-mediated polarization field for optimizing photogenerated carrier dynamics and thermodynamics," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Wei Wang & Qun Song & Qiang Luo & Linqian Li & Xiaobing Huo & Shipeng Chen & Jinyang Li & Yunhong Li & Se Shi & Yihui Yuan & Xiwen Du & Kai Zhang & Ning Wang, 2023. "Photothermal-enabled single-atom catalysts for high-efficiency hydrogen peroxide photosynthesis from natural seawater," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Hong-chao Li & Qiang Wan & Congcong Du & Jiafei Zhao & Fumin Li & Ying Zhang & Yanping Zheng & Mingshu Chen & Kelvin H. L. Zhang & Jianyu Huang & Gang Fu & Sen Lin & Xiaoqing Huang & Haifeng Xiong, 2022. "Layered Pd oxide on PdSn nanowires for boosting direct H2O2 synthesis," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Maria-Anna Gatou & Panagiota Bika & Thomas Stergiopoulos & Panagiotis Dallas & Evangelia A. Pavlatou, 2021. "Recent Advances in Covalent Organic Frameworks for Heavy Metal Removal Applications," Energies, MDPI, vol. 14(11), pages 1-26, May.
    5. Jiahe Zhang & Xiaoning Li & Haijun Hu & Hongwei Huang & Hui Li & Xiaodong Sun & Tianyi Ma, 2024. "Enhancing photocatalytic performance of covalent organic frameworks via ionic polarization," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    6. Yanghui Hou & Peng Zhou & Fuyang Liu & Ke Tong & Yanyu Lu & Zhengmao Li & Jialiang Liang & Meiping Tong, 2024. "Rigid covalent organic frameworks with thiazole linkage to boost oxygen activation for photocatalytic water purification," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    7. Xu Zhang & Hui Su & Peixin Cui & Yongyong Cao & Zhenyuan Teng & Qitao Zhang & Yang Wang & Yibo Feng & Ran Feng & Jixiang Hou & Xiyuan Zhou & Peijie Ma & Hanwen Hu & Kaiwen Wang & Cong Wang & Liyong Ga, 2023. "Developing Ni single-atom sites in carbon nitride for efficient photocatalytic H2O2 production," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    8. Weijun Weng & Jia Guo, 2022. "The effect of enantioselective chiral covalent organic frameworks and cysteine sacrificial donors on photocatalytic hydrogen evolution," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    9. Yannan Liu & Cheng-Hao Liu & Tushar Debnath & Yong Wang & Darius Pohl & Lucas V. Besteiro & Debora Motta Meira & Shengyun Huang & Fan Yang & Bernd Rellinghaus & Mohamed Chaker & Dmytro F. Perepichka &, 2023. "Silver nanoparticle enhanced metal-organic matrix with interface-engineering for efficient photocatalytic hydrogen evolution," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    10. Zhongshan Chen & Jingyi Wang & Mengjie Hao & Yinghui Xie & Xiaolu Liu & Hui Yang & Geoffrey I. N. Waterhouse & Xiangke Wang & Shengqian Ma, 2023. "Tuning excited state electronic structure and charge transport in covalent organic frameworks for enhanced photocatalytic performance," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    11. Yongliang Yang & Ling Yu & Tiancheng Chu & Hongyun Niu & Jun Wang & Yaqi Cai, 2022. "Constructing chemical stable 4-carboxyl-quinoline linked covalent organic frameworks via Doebner reaction for nanofiltration," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    12. Wenwen Chi & Yuming Dong & Bing Liu & Chengsi Pan & Jiawei Zhang & Hui Zhao & Yongfa Zhu & Zeyu Liu, 2024. "A photocatalytic redox cycle over a polyimide catalyst drives efficient solar-to-H2O2 conversion," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    13. Ting He & Wenlong Zhen & Yongzhi Chen & Yuanyuan Guo & Zhuoer Li & Ning Huang & Zhongping Li & Ruoyang Liu & Yuan Liu & Xu Lian & Can Xue & Tze Chien Sum & Wei Chen & Donglin Jiang, 2023. "Integrated interfacial design of covalent organic framework photocatalysts to promote hydrogen evolution from water," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    14. Yuyan Huang & Minhui Shen & Huijie Yan & Yingge He & Jianqiao Xu & Fang Zhu & Xin Yang & Yu-Xin Ye & Gangfeng Ouyang, 2024. "Achieving a solar-to-chemical efficiency of 3.6% in ambient conditions by inhibiting interlayer charges transport," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    15. Shu-Yan Jiang & Zhi-Bei Zhou & Shi-Xian Gan & Ya Lu & Chao Liu & Qiao-Yan Qi & Jin Yao & Xin Zhao, 2024. "Creating amphiphilic porosity in two-dimensional covalent organic frameworks via steric-hindrance-mediated precision hydrophilic-hydrophobic microphase separation," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    16. Cheng-Rong Zhang & Wei-Rong Cui & Shun-Mo Yi & Cheng-Peng Niu & Ru-Ping Liang & Jia-Xin Qi & Xiao-Juan Chen & Wei Jiang & Xin Liu & Qiu-Xia Luo & Jian-Ding Qiu, 2022. "An ionic vinylene-linked three-dimensional covalent organic framework for selective and efficient trapping of ReO4− or 99TcO4−," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    17. Yunyang Qian & Yulan Han & Xiyuan Zhang & Ge Yang & Guozhen Zhang & Hai-Long Jiang, 2023. "Computation-based regulation of excitonic effects in donor-acceptor covalent organic frameworks for enhanced photocatalysis," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    18. Hui Li & Caikun Cheng & Zhijie Yang & Jingjing Wei, 2022. "Encapsulated CdSe/CdS nanorods in double-shelled porous nanocomposites for efficient photocatalytic CO2 reduction," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    19. Rengan Luo & Haifeng Lv & Qiaobo Liao & Ningning Wang & Jiarui Yang & Yang Li & Kai Xi & Xiaojun Wu & Huangxian Ju & Jianping Lei, 2021. "Intrareticular charge transfer regulated electrochemiluminescence of donor–acceptor covalent organic frameworks," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    20. Qinying Pan & Mohamed Abdellah & Yuehan Cao & Weihua Lin & Yang Liu & Jie Meng & Quan Zhou & Qian Zhao & Xiaomei Yan & Zonglong Li & Hao Cui & Huili Cao & Wenting Fang & David Ackland Tanner & Mahmoud, 2022. "Ultrafast charge transfer dynamics in 2D covalent organic frameworks/Re-complex hybrid photocatalyst," Nature Communications, Nature, vol. 13(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40007-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.