IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-24702-8.html
   My bibliography  Save this article

Single-atom Pt-I3 sites on all-inorganic Cs2SnI6 perovskite for efficient photocatalytic hydrogen production

Author

Listed:
  • Peng Zhou

    (Peking University)

  • Hui Chen

    (Peking University
    School of Materials and Energy, University of Electronic Science and Technology of China
    Hainan University)

  • Yuguang Chao

    (Peking University)

  • Qinghua Zhang

    (Chinese Academy of Sciences)

  • Weiyu Zhang

    (Peking University)

  • Fan Lv

    (Peking University)

  • Lin Gu

    (Chinese Academy of Sciences)

  • Qiang Zhao

    (School of Materials and Energy, University of Electronic Science and Technology of China)

  • Ning Wang

    (School of Materials and Energy, University of Electronic Science and Technology of China
    Hainan University)

  • Jinshu Wang

    (School of Materials and Energy, University of Electronic Science and Technology of China)

  • Shaojun Guo

    (Peking University
    Peking University)

Abstract

Organic-inorganic lead halide perovskites are a new class of semiconductor materials with great potential in photocatalytic hydrogen production, however, their development is greatly plagued by their low photocatalytic activity, instability of organic component and lead toxicity in particular. Herein, we report an anti-dissolution environmentally friendly Cs2SnI6 perovskite anchored with a new class of atomically dispersed Pt-I3 species (PtSA/Cs2SnI6) for achieving the highly efficient photocatalytic hydrogen production in HI aqueous solution at room temperature. Particularly, we discover that Cs2SnI6 in PtSA/Cs2SnI6 has a greatly enhanced tolerance towards HI aqueous solution, which is very important for achieving excellent photocatalytic stability in perovskite-based HI splitting system. Remarkably, the PtSA/Cs2SnI6 catalyst shows a superb photocatalytic activity for hydrogen production with a record turnover frequency of 70.6 h−1 per Pt, about 176.5 times greater than that of Pt nanoparticles supported Cs2SnI6 perovskite, along with superior cycling durability. Charge-carrier dynamics studies in combination with theory calculations reveal that the dramatically boosted photocatalytic performance on PtSA/Cs2SnI6 originates from both unique coordination structure and electronic property of Pt-I3 sites, and strong metal-support interaction effect that can not only greatly promote the charge separation and transfer, but also substantially reduce the energy barrier for hydrogen production. This work opens a new way for stimulating more research on perovskite composite materials for efficient hydrogen production.

Suggested Citation

  • Peng Zhou & Hui Chen & Yuguang Chao & Qinghua Zhang & Weiyu Zhang & Fan Lv & Lin Gu & Qiang Zhao & Ning Wang & Jinshu Wang & Shaojun Guo, 2021. "Single-atom Pt-I3 sites on all-inorganic Cs2SnI6 perovskite for efficient photocatalytic hydrogen production," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-24702-8
    DOI: 10.1038/s41467-021-24702-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-24702-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-24702-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jingrun Ran & Hongping Zhang & Sijia Fu & Mietek Jaroniec & Jieqiong Shan & Bingquan Xia & Yang Qu & Jiangtao Qu & Shuangming Chen & Li Song & Julie M. Cairney & Liqiang Jing & Shi-Zhang Qiao, 2022. "NiPS3 ultrathin nanosheets as versatile platform advancing highly active photocatalytic H2 production," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    2. Yanghui Hou & Peng Zhou & Fuyang Liu & Ke Tong & Yanyu Lu & Zhengmao Li & Jialiang Liang & Meiping Tong, 2024. "Rigid covalent organic frameworks with thiazole linkage to boost oxygen activation for photocatalytic water purification," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Fuyang Liu & Peng Zhou & Yanghui Hou & Hao Tan & Yin Liang & Jialiang Liang & Qing Zhang & Shaojun Guo & Meiping Tong & Jinren Ni, 2023. "Covalent organic frameworks for direct photosynthesis of hydrogen peroxide from water, air and sunlight," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-24702-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.