IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-56416-6.html
   My bibliography  Save this article

Coupling Cu2O clusters and imine-linked COFs on microfiltration membranes for fast and robust water sterilization

Author

Listed:
  • Shijia Luo

    (Southeast University)

  • Jinglin Gao

    (Southeast University)

  • Congcong Yin

    (Southeast University)

  • Yanqiu Lu

    (Southeast University)

  • Yong Wang

    (Southeast University)

Abstract

As bacterial contamination crises escalate, the development of advanced membranes possessing both high flux and antibacterial properties is of paramount significance for enhancing water sterilization efficiency. Herein, an ultrathin layer of TbPa (an imine-linked covalent organic framework) and nanosized Cu2O clusters, sequentially deposited onto polyethersulfone membranes, demonstrate exceptional water flux performance, reaching a permeance level of 16000 LHM bar−1. The deposited TbPa, generating uniformly distributed reduction sites under illumination, facilitates the uniform formation of Cu2O clusters. Furthermore, these anchored Cu2O clusters significantly optimize electron transport within the ultra-thin layer of TbPa, thereby enhancing the performance of the membrane in generating reactive oxygen species (ROS). Consequently, this membrane achieves a flux recovery rate exceeding 98.6% for flux losses caused by bacterial fouling and maintains consistent performance over 10 cycles. This work presents an effective strategy for accessing bactericidal membranes and provides insights into efficient and mild water sterilization.

Suggested Citation

  • Shijia Luo & Jinglin Gao & Congcong Yin & Yanqiu Lu & Yong Wang, 2025. "Coupling Cu2O clusters and imine-linked COFs on microfiltration membranes for fast and robust water sterilization," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56416-6
    DOI: 10.1038/s41467-025-56416-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-56416-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-56416-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yimeng Li & Li Yang & Huijie He & Lei Sun & Honglei Wang & Xu Fang & Yanliang Zhao & Daoyuan Zheng & Yu Qi & Zhen Li & Weiqiao Deng, 2022. "In situ photodeposition of platinum clusters on a covalent organic framework for photocatalytic hydrogen production," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fuyang Liu & Peng Zhou & Yanghui Hou & Hao Tan & Yin Liang & Jialiang Liang & Qing Zhang & Shaojun Guo & Meiping Tong & Jinren Ni, 2023. "Covalent organic frameworks for direct photosynthesis of hydrogen peroxide from water, air and sunlight," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Liangjun Chen & Guinan Chen & Chengtao Gong & Yifei Zhang & Zhihao Xing & Jiahao Li & Guodong Xu & Gao Li & Yongwu Peng, 2024. "Low-valence platinum single atoms in sulfur-containing covalent organic frameworks for photocatalytic hydrogen evolution," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Jiahe Zhang & Xiaoning Li & Haijun Hu & Hongwei Huang & Hui Li & Xiaodong Sun & Tianyi Ma, 2024. "Enhancing photocatalytic performance of covalent organic frameworks via ionic polarization," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Zheng Lin & Xiangkun Yu & Zijian Zhao & Ning Ding & Changchun Wang & Ke Hu & Youliang Zhu & Jia Guo, 2025. "Controlling crystallization in covalent organic frameworks to facilitate photocatalytic hydrogen production," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    5. Peng, Jiaru & Han, Yue & Ma, Dingxuan & Zhao, Ruiyang & Han, Jishu & Wang, Lei, 2023. "Hollow Cd0.9In0.1Se/Cu2MoS4 nanocube S-scheme heterojunction towards high photocatalytic hydrogen production," Renewable Energy, Elsevier, vol. 212(C), pages 984-993.
    6. Chengxin Zhou & Jian Gao & Yunlong Deng & Ming Wang & Dan Li & Chuan Xia, 2023. "Electric double layer-mediated polarization field for optimizing photogenerated carrier dynamics and thermodynamics," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    7. Ting He & Wenlong Zhen & Yongzhi Chen & Yuanyuan Guo & Zhuoer Li & Ning Huang & Zhongping Li & Ruoyang Liu & Yuan Liu & Xu Lian & Can Xue & Tze Chien Sum & Wei Chen & Donglin Jiang, 2023. "Integrated interfacial design of covalent organic framework photocatalysts to promote hydrogen evolution from water," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    8. Yanghui Hou & Peng Zhou & Fuyang Liu & Ke Tong & Yanyu Lu & Zhengmao Li & Jialiang Liang & Meiping Tong, 2024. "Rigid covalent organic frameworks with thiazole linkage to boost oxygen activation for photocatalytic water purification," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    9. Ziqi Zhang & Zhe Zhang & Cailing Chen & Rui Wang & Minggang Xie & Sheng Wan & Ruige Zhang & Linchuan Cong & Haiyan Lu & Yu Han & Wei Xing & Zhan Shi & Shouhua Feng, 2024. "Single-atom platinum with asymmetric coordination environment on fully conjugated covalent organic framework for efficient electrocatalysis," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56416-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.