IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-57166-1.html
   My bibliography  Save this article

Controlling crystallization in covalent organic frameworks to facilitate photocatalytic hydrogen production

Author

Listed:
  • Zheng Lin

    (Fudan University)

  • Xiangkun Yu

    (Jilin University)

  • Zijian Zhao

    (Fudan University)

  • Ning Ding

    (Fudan University)

  • Changchun Wang

    (Fudan University)

  • Ke Hu

    (Fudan University
    Tongji University)

  • Youliang Zhu

    (Jilin University)

  • Jia Guo

    (Fudan University)

Abstract

The catalytic performance, depending on the surface nature, is ubiquitous in photocatalysis. However, surface engineering for organic photocatalysts through structural modulation has long been neglected. Here, we propose a zone crystallization strategy for covalent organic frameworks (COFs) that enhances surface ordering through regulator-induced amorphous-to-crystalline transformation. Dynamic simulations show that attaching monofunctional regulators to the surface of spherical amorphous precursor improves surface dynamic reversibility, increasing crystallinity from the inside out. The resulting COF microspheres display surface-enhanced crystallinity and uniform spherical morphology. The visible photocatalytic hydrogen evolution rate reaches 126 mmol g–1 h–1 for the simplest β-ketoenamine-linked COF and 350 mmol gCOF–1 h–1 for SiO2@COF with minimal Pt cocatalysts. Mechanism studies indicate that surface crystalline domains build the surface electrical fields to accumulate photogenerated electrons and diminish electron transfer barriers between the COF and Pt interface. This work bridges the gap between microscopic molecules and macroscopic properties, allowing tailored design of crystalline organic photocatalysts.

Suggested Citation

  • Zheng Lin & Xiangkun Yu & Zijian Zhao & Ning Ding & Changchun Wang & Ke Hu & Youliang Zhu & Jia Guo, 2025. "Controlling crystallization in covalent organic frameworks to facilitate photocatalytic hydrogen production," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57166-1
    DOI: 10.1038/s41467-025-57166-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-57166-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-57166-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wei Zhou & Xiao Wang & Wenling Zhao & Naijia Lu & Die Cong & Zhen Li & Peigeng Han & Guoqing Ren & Lei Sun & Chengcheng Liu & Wei-Qiao Deng, 2023. "Photocatalytic CO2 reduction to syngas using metallosalen covalent organic frameworks," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Chengjun Kang & Kuiwei Yang & Zhaoqiang Zhang & Adam K. Usadi & David C. Calabro & Lisa Saunders Baugh & Yuxiang Wang & Jianwen Jiang & Xiaodong Zou & Zhehao Huang & Dan Zhao, 2022. "Growing single crystals of two-dimensional covalent organic frameworks enabled by intermediate tracing study," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Yimeng Li & Li Yang & Huijie He & Lei Sun & Honglei Wang & Xu Fang & Yanliang Zhao & Daoyuan Zheng & Yu Qi & Zhen Li & Weiqiao Deng, 2022. "In situ photodeposition of platinum clusters on a covalent organic framework for photocatalytic hydrogen production," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Shuai Bi & Can Yang & Wenbei Zhang & Junsong Xu & Lingmei Liu & Dongqing Wu & Xinchen Wang & Yu Han & Qifeng Liang & Fan Zhang, 2019. "Two-dimensional semiconducting covalent organic frameworks via condensation at arylmethyl carbon atoms," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    5. Weiwei Zhang & Linjiang Chen & Sheng Dai & Chengxi Zhao & Cheng Ma & Lei Wei & Minghui Zhu & Samantha Y. Chong & Haofan Yang & Lunjie Liu & Yang Bai & Miaojie Yu & Yongjie Xu & Xiao-Wei Zhu & Qiang Zh, 2022. "Reconstructed covalent organic frameworks," Nature, Nature, vol. 604(7904), pages 72-79, April.
    6. M. G. Kibria & F. A. Chowdhury & S. Zhao & B. AlOtaibi & M. L. Trudeau & H. Guo & Z. Mi, 2015. "Visible light-driven efficient overall water splitting using p-type metal-nitride nanowire arrays," Nature Communications, Nature, vol. 6(1), pages 1-8, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fuyang Liu & Peng Zhou & Yanghui Hou & Hao Tan & Yin Liang & Jialiang Liang & Qing Zhang & Shaojun Guo & Meiping Tong & Jinren Ni, 2023. "Covalent organic frameworks for direct photosynthesis of hydrogen peroxide from water, air and sunlight," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Jiahe Zhang & Xiaoning Li & Haijun Hu & Hongwei Huang & Hui Li & Xiaodong Sun & Tianyi Ma, 2024. "Enhancing photocatalytic performance of covalent organic frameworks via ionic polarization," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Menon, Sumithra Sivadas & Hafeez, Hafeez Yusuf & Gupta, Bhavana & Baskar, K. & Bhalerao, Gopal & Hussain, Shamima & Neppolian, Bernaurdshaw & Singh, Shubra, 2019. "ZnO:InN oxynitride: A novel and unconventional photocatalyst for efficient UV–visible light driven hydrogen evolution from water," Renewable Energy, Elsevier, vol. 141(C), pages 760-769.
    4. Shijia Luo & Jinglin Gao & Congcong Yin & Yanqiu Lu & Yong Wang, 2025. "Coupling Cu2O clusters and imine-linked COFs on microfiltration membranes for fast and robust water sterilization," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    5. Zhen Zhang & Zhenyu Xing & Xianglin Luo & Chong Cheng & Xikui Liu, 2025. "Densely populated macrocyclic dicobalt sites in ladder polymers for low-overpotential oxygen reduction catalysis," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    6. Ruiz-Aguirre, A. & Villachica-Llamosas, J.G. & Polo-López, M.I. & Cabrera-Reina, A. & Colón, G. & Peral, J. & Malato, S., 2022. "Assessment of pilot-plant scale solar photocatalytic hydrogen generation with multiple approaches: Valorization, water decontamination and disinfection," Energy, Elsevier, vol. 260(C).
    7. Yannan Liu & Cheng-Hao Liu & Tushar Debnath & Yong Wang & Darius Pohl & Lucas V. Besteiro & Debora Motta Meira & Shengyun Huang & Fan Yang & Bernd Rellinghaus & Mohamed Chaker & Dmytro F. Perepichka &, 2023. "Silver nanoparticle enhanced metal-organic matrix with interface-engineering for efficient photocatalytic hydrogen evolution," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    8. Zeng, Zilong & Jing, Dengwei & Guo, Liejin, 2021. "Efficient hydrogen production in a spotlight reactor with plate photocatalyst of TiO2/NiO heterojunction supported on nickel foam," Energy, Elsevier, vol. 228(C).
    9. Maria-Anna Gatou & Panagiota Bika & Thomas Stergiopoulos & Panagiotis Dallas & Evangelia A. Pavlatou, 2021. "Recent Advances in Covalent Organic Frameworks for Heavy Metal Removal Applications," Energies, MDPI, vol. 14(11), pages 1-26, May.
    10. Liangjun Chen & Guinan Chen & Chengtao Gong & Yifei Zhang & Zhihao Xing & Jiahao Li & Guodong Xu & Gao Li & Yongwu Peng, 2024. "Low-valence platinum single atoms in sulfur-containing covalent organic frameworks for photocatalytic hydrogen evolution," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    11. Wenyuan Lyu & Yang Liu & Datong Chen & Fengliang Wang & Yingwei Li, 2024. "Engineering the electron localization of metal sites on nanosheets assembled periodic macropores for CO2 photoreduction," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    12. Peng, Jiaru & Han, Yue & Ma, Dingxuan & Zhao, Ruiyang & Han, Jishu & Wang, Lei, 2023. "Hollow Cd0.9In0.1Se/Cu2MoS4 nanocube S-scheme heterojunction towards high photocatalytic hydrogen production," Renewable Energy, Elsevier, vol. 212(C), pages 984-993.
    13. Guo, Liejin & Chen, Yubin & Su, Jinzhan & Liu, Maochang & Liu, Ya, 2019. "Obstacles of solar-powered photocatalytic water splitting for hydrogen production: A perspective from energy flow and mass flow," Energy, Elsevier, vol. 172(C), pages 1079-1086.
    14. Chengxin Zhou & Jian Gao & Yunlong Deng & Ming Wang & Dan Li & Chuan Xia, 2023. "Electric double layer-mediated polarization field for optimizing photogenerated carrier dynamics and thermodynamics," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    15. Zhongshan Chen & Jingyi Wang & Mengjie Hao & Yinghui Xie & Xiaolu Liu & Hui Yang & Geoffrey I. N. Waterhouse & Xiangke Wang & Shengqian Ma, 2023. "Tuning excited state electronic structure and charge transport in covalent organic frameworks for enhanced photocatalytic performance," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    16. Ting He & Wenlong Zhen & Yongzhi Chen & Yuanyuan Guo & Zhuoer Li & Ning Huang & Zhongping Li & Ruoyang Liu & Yuan Liu & Xu Lian & Can Xue & Tze Chien Sum & Wei Chen & Donglin Jiang, 2023. "Integrated interfacial design of covalent organic framework photocatalysts to promote hydrogen evolution from water," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    17. Chatterjee, U. & Park, Ji-Hyeon & Um, Dae-Young & Lee, Cheul-Ro, 2017. "III-nitride nanowires for solar light harvesting: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1002-1015.
    18. Cheng-Rong Zhang & Wei-Rong Cui & Shun-Mo Yi & Cheng-Peng Niu & Ru-Ping Liang & Jia-Xin Qi & Xiao-Juan Chen & Wei Jiang & Xin Liu & Qiu-Xia Luo & Jian-Ding Qiu, 2022. "An ionic vinylene-linked three-dimensional covalent organic framework for selective and efficient trapping of ReO4− or 99TcO4−," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    19. Xin Liu & Danhao Wang & Wei Chen & Yang Kang & Shi Fang & Yuanmin Luo & Dongyang Luo & Huabin Yu & Haochen Zhang & Kun Liang & Lan Fu & Boon S. Ooi & Sheng Liu & Haiding Sun, 2024. "Optoelectronic synapses with chemical-electric behaviors in gallium nitride semiconductors for biorealistic neuromorphic functionality," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    20. Hui Li & Caikun Cheng & Zhijie Yang & Jingjing Wei, 2022. "Encapsulated CdSe/CdS nanorods in double-shelled porous nanocomposites for efficient photocatalytic CO2 reduction," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57166-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.