IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-05462-4.html
   My bibliography  Save this article

Facile transformation of imine covalent organic frameworks into ultrastable crystalline porous aromatic frameworks

Author

Listed:
  • Xinle Li

    (Lawrence Berkeley National Laboratory)

  • Changlin Zhang

    (Lawrence Berkeley National Laboratory)

  • Songliang Cai

    (South China Normal University)

  • Xiaohe Lei

    (Lawrence Berkeley National Laboratory
    Zhejiang University)

  • Virginia Altoe

    (Lawrence Berkeley National Laboratory)

  • Fang Hong

    (Lawrence Berkeley National Laboratory)

  • Jeffrey J. Urban

    (Lawrence Berkeley National Laboratory)

  • Jim Ciston

    (Lawrence Berkeley National Laboratory)

  • Emory M. Chan

    (Lawrence Berkeley National Laboratory)

  • Yi Liu

    (Lawrence Berkeley National Laboratory)

Abstract

The growing interest in two-dimensional imine-based covalent organic frameworks (COFs) is inspired by their crystalline porous structures and the potential for extensive π-electron delocalization. The intrinsic reversibility and strong polarization of imine linkages, however, leads to insufficient chemical stability and optoelectronic properties. Developing COFs with improved robustness and π-delocalization is highly desirable but remains an unsettled challenge. Here we report a facile strategy that transforms imine-linked COFs into ultrastable porous aromatic frameworks by kinetically fixing the reversible imine linkage via an aza-Diels-Alder cycloaddition reaction. The as-formed, quinoline-linked COFs not only retain crystallinity and porosity, but also display dramatically enhanced chemical stability over their imine-based COF precursors, rendering them among the most robust COFs up-to-date that can withstand strong acidic, basic and redox environment. Owing to the chemical diversity of the cycloaddition reaction and structural tunability of COFs, the pores of COFs can be readily engineered to realize pre-designed surface functionality.

Suggested Citation

  • Xinle Li & Changlin Zhang & Songliang Cai & Xiaohe Lei & Virginia Altoe & Fang Hong & Jeffrey J. Urban & Jim Ciston & Emory M. Chan & Yi Liu, 2018. "Facile transformation of imine covalent organic frameworks into ultrastable crystalline porous aromatic frameworks," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-05462-4
    DOI: 10.1038/s41467-018-05462-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-05462-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-05462-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yongliang Yang & Ling Yu & Tiancheng Chu & Hongyun Niu & Jun Wang & Yaqi Cai, 2022. "Constructing chemical stable 4-carboxyl-quinoline linked covalent organic frameworks via Doebner reaction for nanofiltration," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Maria-Anna Gatou & Panagiota Bika & Thomas Stergiopoulos & Panagiotis Dallas & Evangelia A. Pavlatou, 2021. "Recent Advances in Covalent Organic Frameworks for Heavy Metal Removal Applications," Energies, MDPI, vol. 14(11), pages 1-26, May.
    3. Fuyang Liu & Peng Zhou & Yanghui Hou & Hao Tan & Yin Liang & Jialiang Liang & Qing Zhang & Shaojun Guo & Meiping Tong & Jinren Ni, 2023. "Covalent organic frameworks for direct photosynthesis of hydrogen peroxide from water, air and sunlight," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Yunyang Qian & Yulan Han & Xiyuan Zhang & Ge Yang & Guozhen Zhang & Hai-Long Jiang, 2023. "Computation-based regulation of excitonic effects in donor-acceptor covalent organic frameworks for enhanced photocatalysis," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Shu-Yan Jiang & Zhi-Bei Zhou & Shi-Xian Gan & Ya Lu & Chao Liu & Qiao-Yan Qi & Jin Yao & Xin Zhao, 2024. "Creating amphiphilic porosity in two-dimensional covalent organic frameworks via steric-hindrance-mediated precision hydrophilic-hydrophobic microphase separation," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    6. Jia-Rui Wang & Kepeng Song & Tian-Xiang Luan & Ke Cheng & Qiurong Wang & Yue Wang & William W. Yu & Pei-Zhou Li & Yanli Zhao, 2024. "Robust links in photoactive covalent organic frameworks enable effective photocatalytic reactions under harsh conditions," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    7. Weijun Weng & Jia Guo, 2022. "The effect of enantioselective chiral covalent organic frameworks and cysteine sacrificial donors on photocatalytic hydrogen evolution," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-05462-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.