IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v5y2014i1d10.1038_ncomms5865.html
   My bibliography  Save this article

Fano resonances and all-optical switching in a resonantly coupled plasmonic–atomic system

Author

Listed:
  • Liron Stern

    (The Benin School of Engineering and Computer Science, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem)

  • Meir Grajower

    (The Benin School of Engineering and Computer Science, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem)

  • Uriel Levy

    (The Benin School of Engineering and Computer Science, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem)

Abstract

The possibility of combining atomic and plasmonic resonances opens new avenues for tailoring the spectral properties of materials. Following the rapid progress in the field of plasmonics, it is now possible to confine light to unprecedented nanometre dimensions, enhancing light–matter interactions at the nanoscale. However, the resonant coupling between the relatively broad plasmonic resonance and the ultra-narrow fundamental atomic line remains challenging. Here we demonstrate a resonantly coupled plasmonic–atomic platform consisting of a surface plasmon resonance and rubidium (85Rb) atomic vapour. Taking advantage of the Fano interplay between the atomic and plasmonic resonances, we are able to control the lineshape and the dispersion of this hybrid system. Furthermore, by exploiting the plasmonic enhancement of light–matter interactions, we demonstrate all-optical control of the Fano resonance by introducing an additional pump beam.

Suggested Citation

  • Liron Stern & Meir Grajower & Uriel Levy, 2014. "Fano resonances and all-optical switching in a resonantly coupled plasmonic–atomic system," Nature Communications, Nature, vol. 5(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms5865
    DOI: 10.1038/ncomms5865
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms5865
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms5865?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Longlong Yang & Yu Yuan & Bowen Fu & Jingnan Yang & Danjie Dai & Shushu Shi & Sai Yan & Rui Zhu & Xu Han & Hancong Li & Zhanchun Zuo & Can Wang & Yuan Huang & Kuijuan Jin & Qihuang Gong & Xiulai Xu, 2023. "Revealing broken valley symmetry of quantum emitters in WSe2 with chiral nanocavities," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms5865. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.