IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-39803-9.html
   My bibliography  Save this article

Increased precipitation over land due to climate feedback of large-scale bioenergy cultivation

Author

Listed:
  • Zhao Li

    (Tsinghua University)

  • Philippe Ciais

    (Université Paris-Saclay)

  • Jonathon S. Wright

    (Tsinghua University)

  • Yong Wang

    (Tsinghua University)

  • Shu Liu

    (Tsinghua University)

  • Jingmeng Wang

    (Tsinghua University)

  • Laurent Z. X. Li

    (Sorbonne Université, Ecole Normale Supérieure, Ecole Polytechnique)

  • Hui Lu

    (Tsinghua University)

  • Xiaomeng Huang

    (Tsinghua University)

  • Lei Zhu

    (Tsinghua University)

  • Daniel S. Goll

    (Université Paris Saclay, CEA-CNRS-UVSQ, LSCE/IPSL)

  • Wei Li

    (Tsinghua University
    Ministry of Education Ecological Field Station for East Asian Migratory Birds)

Abstract

Bioenergy with carbon capture and storage (BECCS) is considered to be a key technology for removing carbon dioxide from the atmosphere. However, large-scale bioenergy crop cultivation results in land cover changes and activates biophysical effects on climate, with earth’s water recycling altered and energy budget re-adjusted. Here, we use a coupled atmosphere-land model with explicit representations of high-transpiration woody (i.e., eucalypt) and low-transpiration herbaceous (i.e., switchgrass) bioenergy crops to investigate the range of impact of large-scale rainfed bioenergy crop cultivation on the global water cycle and atmospheric water recycling. We find that global land precipitation increases under BECCS scenarios, due to enhanced evapotranspiration and inland moisture advection. Despite enhanced evapotranspiration, soil moisture decreases only slightly, due to increased precipitation and reduced runoff. Our results indicate that, at the global scale, the water consumption by bioenergy crop growth would be partially compensated by atmospheric feedbacks. Thus, to support more effective climate mitigation policies, a more comprehensive assessment, including the biophysical effects of bioenergy cultivation, is highly recommended.

Suggested Citation

  • Zhao Li & Philippe Ciais & Jonathon S. Wright & Yong Wang & Shu Liu & Jingmeng Wang & Laurent Z. X. Li & Hui Lu & Xiaomeng Huang & Lei Zhu & Daniel S. Goll & Wei Li, 2023. "Increased precipitation over land due to climate feedback of large-scale bioenergy cultivation," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39803-9
    DOI: 10.1038/s41467-023-39803-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-39803-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-39803-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jan Huizinga & Hans de Moel & Wojciech Szewczyk, 2017. "Global flood depth-damage functions: Methodology and the database with guidelines," JRC Research Reports JRC105688, Joint Research Centre.
    2. Brendan Choat & Timothy J. Brodribb & Craig R. Brodersen & Remko A. Duursma & Rosana López & Belinda E. Medlyn, 2018. "Triggers of tree mortality under drought," Nature, Nature, vol. 558(7711), pages 531-539, June.
    3. Siqing Xu & Rong Wang & Thomas Gasser & Philippe Ciais & Josep Peñuelas & Yves Balkanski & Olivier Boucher & Ivan A. Janssens & Jordi Sardans & James H. Clark & Junji Cao & Xiaofan Xing & Jianmin Chen, 2022. "Delayed use of bioenergy crops might threaten climate and food security," Nature, Nature, vol. 609(7926), pages 299-306, September.
    4. Jan Sandstad Næss & Otavio Cavalett & Francesco Cherubini, 2021. "The land–energy–water nexus of global bioenergy potentials from abandoned cropland," Nature Sustainability, Nature, vol. 4(6), pages 525-536, June.
    5. Chris A. Boulton & Timothy M. Lenton & Niklas Boers, 2022. "Pronounced loss of Amazon rainforest resilience since the early 2000s," Nature Climate Change, Nature, vol. 12(3), pages 271-278, March.
    6. Fabian Stenzel & Peter Greve & Wolfgang Lucht & Sylvia Tramberend & Yoshihide Wada & Dieter Gerten, 2021. "Irrigation of biomass plantations may globally increase water stress more than climate change," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    7. Zhipin Ai & Naota Hanasaki & Vera Heck & Tomoko Hasegawa & Shinichiro Fujimori, 2021. "Global bioenergy with carbon capture and storage potential is largely constrained by sustainable irrigation," Nature Sustainability, Nature, vol. 4(10), pages 884-891, October.
    8. Juan P. Boisier & Philippe Ciais & Agnès Ducharne & Matthieu Guimberteau, 2015. "Projected strengthening of Amazonian dry season by constrained climate model simulations," Nature Climate Change, Nature, vol. 5(7), pages 656-660, July.
    9. Anna B. Harper & Tom Powell & Peter M. Cox & Joanna House & Chris Huntingford & Timothy M. Lenton & Stephen Sitch & Eleanor Burke & Sarah E. Chadburn & William J. Collins & Edward Comyn-Platt & Vassil, 2018. "Land-use emissions play a critical role in land-based mitigation for Paris climate targets," Nature Communications, Nature, vol. 9(1), pages 1-13, December.
    10. Pete Smith & Steven J. Davis & Felix Creutzig & Sabine Fuss & Jan Minx & Benoit Gabrielle & Etsushi Kato & Robert B. Jackson & Annette Cowie & Elmar Kriegler & Detlef P. van Vuuren & Joeri Rogelj & Ph, 2016. "Biophysical and economic limits to negative CO2 emissions," Nature Climate Change, Nature, vol. 6(1), pages 42-50, January.
    11. S. V. Hanssen & V. Daioglou & Z. J. N. Steinmann & J. C. Doelman & D. P. Vuuren & M. A. J. Huijbregts, 2020. "The climate change mitigation potential of bioenergy with carbon capture and storage," Nature Climate Change, Nature, vol. 10(11), pages 1023-1029, November.
    12. Hessel C. Winsemius & Jeroen C. J. H. Aerts & Ludovicus P. H. van Beek & Marc F. P. Bierkens & Arno Bouwman & Brenden Jongman & Jaap C. J. Kwadijk & Willem Ligtvoet & Paul L. Lucas & Detlef P. van Vuu, 2016. "Global drivers of future river flood risk," Nature Climate Change, Nature, vol. 6(4), pages 381-385, April.
    13. Zhiqiang Yin & Yixin Hu & Katie Jenkins & Yi He & Nicole Forstenhäusler & Rachel Warren & Lili Yang & Rhosanna Jenkins & Dabo Guan, 2021. "Assessing the economic impacts of future fluvial flooding in six countries under climate change and socio-economic development," Climatic Change, Springer, vol. 166(3), pages 1-21, June.
    14. Xiaoming Feng & Bojie Fu & Shilong Piao & Shuai Wang & Philippe Ciais & Zhenzhong Zeng & Yihe Lü & Yuan Zeng & Yue Li & Xiaohui Jiang & Bingfang Wu, 2016. "Revegetation in China’s Loess Plateau is approaching sustainable water resource limits," Nature Climate Change, Nature, vol. 6(11), pages 1019-1022, November.
    15. Joeri Rogelj & Alexander Popp & Katherine V. Calvin & Gunnar Luderer & Johannes Emmerling & David Gernaat & Shinichiro Fujimori & Jessica Strefler & Tomoko Hasegawa & Giacomo Marangoni & Volker Krey &, 2018. "Scenarios towards limiting global mean temperature increase below 1.5 °C," Nature Climate Change, Nature, vol. 8(4), pages 325-332, April.
    16. Zhenzhong Zeng & Shilong Piao & Laurent Z. X. Li & Liming Zhou & Philippe Ciais & Tao Wang & Yue Li & Xu Lian & Eric F. Wood & Pierre Friedlingstein & Jiafu Mao & Lyndon D. Estes & Ranga B. Myneni & S, 2017. "Climate mitigation from vegetation biophysical feedbacks during the past three decades," Nature Climate Change, Nature, vol. 7(6), pages 432-436, June.
    17. Jingmeng Wang & Wei Li & Philippe Ciais & Laurent Z. X. Li & Jinfeng Chang & Daniel Goll & Thomas Gasser & Xiaomeng Huang & Narayanappa Devaraju & Olivier Boucher, 2021. "Global cooling induced by biophysical effects of bioenergy crop cultivation," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jingmeng Wang & Wei Li & Philippe Ciais & Laurent Z. X. Li & Jinfeng Chang & Daniel Goll & Thomas Gasser & Xiaomeng Huang & Narayanappa Devaraju & Olivier Boucher, 2021. "Global cooling induced by biophysical effects of bioenergy crop cultivation," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    2. Xin Zhao & Bryan K. Mignone & Marshall A. Wise & Haewon C. McJeon, 2024. "Trade-offs in land-based carbon removal measures under 1.5 °C and 2 °C futures," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Selene Cobo & Ángel Galán-Martín & Victor Tulus & Mark A. J. Huijbregts & Gonzalo Guillén-Gosálbez, 2022. "Human and planetary health implications of negative emissions technologies," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Ángel Galán-Martín & Daniel Vázquez & Selene Cobo & Niall Dowell & José Antonio Caballero & Gonzalo Guillén-Gosálbez, 2021. "Delaying carbon dioxide removal in the European Union puts climate targets at risk," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    5. Vera, Ivan & Wicke, Birka & Lamers, Patrick & Cowie, Annette & Repo, Anna & Heukels, Bas & Zumpf, Colleen & Styles, David & Parish, Esther & Cherubini, Francesco & Berndes, Göran & Jager, Henriette & , 2022. "Land use for bioenergy: Synergies and trade-offs between sustainable development goals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    6. Fang, Yan Ru & Hossain, MD Shouquat & Peng, Shuan & Han, Ling & Yang, Pingjian, 2024. "Sustainable energy development of crop straw in five southern provinces of China: Bioenergy production, land, and water saving potential," Renewable Energy, Elsevier, vol. 224(C).
    7. Galán-Martín, Ángel & Contreras, María del Mar & Romero, Inmaculada & Ruiz, Encarnación & Bueno-Rodríguez, Salvador & Eliche-Quesada, Dolores & Castro-Galiano, Eulogio, 2022. "The potential role of olive groves to deliver carbon dioxide removal in a carbon-neutral Europe: Opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    8. Aljoša Slameršak & Giorgos Kallis & Daniel W. O’Neill, 2022. "Energy requirements and carbon emissions for a low-carbon energy transition," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    9. Migo-Sumagang, Maria Victoria & Tan, Raymond R. & Aviso, Kathleen B., 2023. "A multi-period model for optimizing negative emission technology portfolios with economic and carbon value discount rates," Energy, Elsevier, vol. 275(C).
    10. Nair, Purusothmn Nair S Bhasker & Tan, Raymond R. & Foo, Dominic C.Y., 2022. "Extended graphical approach for the implementation of energy-consuming negative emission technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    11. Tesselaar, Max & Botzen, W.J. Wouter & Robinson, Peter J. & Aerts, Jeroen C.J.H. & Zhou, Fujin, 2022. "Charity hazard and the flood insurance protection gap: An EU scale assessment under climate change," Ecological Economics, Elsevier, vol. 193(C).
    12. Wu, Yazhen & Deppermann, Andre & Havlík, Petr & Frank, Stefan & Ren, Ming & Zhao, Hao & Ma, Lin & Fang, Chen & Chen, Qi & Dai, Hancheng, 2023. "Global land-use and sustainability implications of enhanced bioenergy import of China," Applied Energy, Elsevier, vol. 336(C).
    13. Julien Boulange & Yukiko Hirabayashi & Masahiro Tanoue & Toshinori Yamada, 2023. "Quantitative evaluation of flood damage methodologies under a portfolio of adaptation scenarios," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(3), pages 1855-1879, September.
    14. Patange, Omkar S. & Garg, Amit & Jayaswal, Sachin, 2022. "An integrated bottom-up optimization to investigate the role of BECCS in transitioning towards a net-zero energy system: A case study from Gujarat, India," Energy, Elsevier, vol. 255(C).
    15. Yitao Li & Zhao-Liang Li & Hua Wu & Chenghu Zhou & Xiangyang Liu & Pei Leng & Peng Yang & Wenbin Wu & Ronglin Tang & Guo-Fei Shang & Lingling Ma, 2023. "Biophysical impacts of earth greening can substantially mitigate regional land surface temperature warming," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    16. Antoine Mandel & Timothy Tiggeloven & Daniel Lincke & Elco Koks & Philip Ward & Jochen Hinkel, 2021. "Risks on global financial stability induced by climate change: the case of flood risks," Climatic Change, Springer, vol. 166(1), pages 1-24, May.
    17. Fan, Jing-Li & Li, Zezheng & Ding, Zixia & Li, Kai & Zhang, Xian, 2023. "Investment decisions on carbon capture utilization and storage retrofit of Chinese coal-fired power plants based on real option and source-sink matching models," Energy Economics, Elsevier, vol. 126(C).
    18. Zhiqiang Yin & Yixin Hu & Katie Jenkins & Yi He & Nicole Forstenhäusler & Rachel Warren & Lili Yang & Rhosanna Jenkins & Dabo Guan, 2021. "Assessing the economic impacts of future fluvial flooding in six countries under climate change and socio-economic development," Climatic Change, Springer, vol. 166(3), pages 1-21, June.
    19. Fan, Jing-Li & Li, Zezheng & Li, Kai & Zhang, Xian, 2022. "Modelling plant-level abatement costs and effects of incentive policies for coal-fired power generation retrofitted with CCUS," Energy Policy, Elsevier, vol. 165(C).
    20. Weng, Yuwei & Cai, Wenjia & Wang, Can, 2021. "Evaluating the use of BECCS and afforestation under China’s carbon-neutral target for 2060," Applied Energy, Elsevier, vol. 299(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39803-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.