Climate mitigation from vegetation biophysical feedbacks during the past three decades
Author
Abstract
Suggested Citation
DOI: 10.1038/nclimate3299
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Xu Lian & Sujong Jeong & Chang-Eui Park & Hao Xu & Laurent Z. X. Li & Tao Wang & Pierre Gentine & Josep Peñuelas & Shilong Piao, 2022. "Biophysical impacts of northern vegetation changes on seasonal warming patterns," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
- Yitao Li & Zhao-Liang Li & Hua Wu & Chenghu Zhou & Xiangyang Liu & Pei Leng & Peng Yang & Wenbin Wu & Ronglin Tang & Guo-Fei Shang & Lingling Ma, 2023. "Biophysical impacts of earth greening can substantially mitigate regional land surface temperature warming," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
- Wu, Jie & Feng, Yu & Liang, Lili & He, Xinyue & Zeng, Zhenzhong, 2022. "Assessing evapotranspiration observed from ECOSTRESS using flux measurements in agroecosystems," Agricultural Water Management, Elsevier, vol. 269(C).
- Jingmeng Wang & Wei Li & Philippe Ciais & Laurent Z. X. Li & Jinfeng Chang & Daniel Goll & Thomas Gasser & Xiaomeng Huang & Narayanappa Devaraju & Olivier Boucher, 2021. "Global cooling induced by biophysical effects of bioenergy crop cultivation," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
- Zhao Li & Philippe Ciais & Jonathon S. Wright & Yong Wang & Shu Liu & Jingmeng Wang & Laurent Z. X. Li & Hui Lu & Xiaomeng Huang & Lei Zhu & Daniel S. Goll & Wei Li, 2023. "Increased precipitation over land due to climate feedback of large-scale bioenergy cultivation," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
- Jing Kong & Yongling Zhao & Jan Carmeliet & Chengwang Lei, 2021. "Urban Heat Island and Its Interaction with Heatwaves: A Review of Studies on Mesoscale," Sustainability, MDPI, vol. 13(19), pages 1-26, September.
- Liang Qiao & Zhiyan Zuo & Renhe Zhang & Shilong Piao & Dong Xiao & Kaiwen Zhang, 2023. "Soil moisture–atmosphere coupling accelerates global warming," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcli:v:7:y:2017:i:6:d:10.1038_nclimate3299. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.