IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v558y2018i7711d10.1038_s41586-018-0240-x.html
   My bibliography  Save this article

Triggers of tree mortality under drought

Author

Listed:
  • Brendan Choat

    (Hawkesbury Institute for the Environment, Western Sydney University)

  • Timothy J. Brodribb

    (School of Biological Sciences, University of Tasmania)

  • Craig R. Brodersen

    (School of Forestry and Environmental Studies, Yale University)

  • Remko A. Duursma

    (Hawkesbury Institute for the Environment, Western Sydney University)

  • Rosana López

    (Hawkesbury Institute for the Environment, Western Sydney University
    PIAF, INRA, Université Clermont Auvergne)

  • Belinda E. Medlyn

    (Hawkesbury Institute for the Environment, Western Sydney University)

Abstract

Severe droughts have caused widespread tree mortality across many forest biomes with profound effects on the function of ecosystems and carbon balance. Climate change is expected to intensify regional-scale droughts, focusing attention on the physiological basis of drought-induced tree mortality. Recent work has shown that catastrophic failure of the plant hydraulic system is a principal mechanism involved in extensive crown death and tree mortality during drought, but the multi-dimensional response of trees to desiccation is complex. Here we focus on the current understanding of tree hydraulic performance under drought, the identification of physiological thresholds that precipitate mortality and the mechanisms of recovery after drought. Building on this, we discuss the potential application of hydraulic thresholds to process-based models that predict mortality.

Suggested Citation

  • Brendan Choat & Timothy J. Brodribb & Craig R. Brodersen & Remko A. Duursma & Rosana López & Belinda E. Medlyn, 2018. "Triggers of tree mortality under drought," Nature, Nature, vol. 558(7711), pages 531-539, June.
  • Handle: RePEc:nat:nature:v:558:y:2018:i:7711:d:10.1038_s41586-018-0240-x
    DOI: 10.1038/s41586-018-0240-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-018-0240-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-018-0240-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alejandro Martínez-Calvo & Matthew D. Biviano & Anneline H. Christensen & Eleni Katifori & Kaare H. Jensen & Miguel Ruiz-García, 2024. "The fluidic memristor as a collective phenomenon in elastohydrodynamic networks," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Dai, Junjie & Zhao, Ying & Seki, Katsutoshi & Wang, Li, 2024. "Changes in water-use strategies and soil water status of degraded poplar plantations in water-limited areas," Agricultural Water Management, Elsevier, vol. 296(C).
    3. Zihao Man & Shengquan Che & Changkun Xie & Ruiyuan Jiang & Anze Liang & Hao Wu, 2021. "Effect of Climate Change on CO 2 Flux in Temperate Grassland, Subtropical Artificial Coniferous Forest and Tropical Rain Forest Ecosystems," IJERPH, MDPI, vol. 18(24), pages 1-18, December.
    4. Daijun Liu & Adriane Esquivel-Muelbert & Nezha Acil & Julen Astigarraga & Emil Cienciala & Jonas Fridman & Georges Kunstler & Thomas J. Matthews & Paloma Ruiz-Benito & Jonathan P. Sadler & Mart-Jan Sc, 2024. "Mapping multi-dimensional variability in water stress strategies across temperate forests," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Zhang, Zhongdian & Huang, Mingbin, 2021. "Effect of root-zone vertical soil moisture heterogeneity on water transport safety in soil-plant-atmosphere continuum in Robinia pseudoacacia," Agricultural Water Management, Elsevier, vol. 246(C).
    6. Liu, Qiuyu & Peng, Changhui & Schneider, Robert & Cyr, Dominic & Liu, Zelin & Zhou, Xiaolu & Kneeshaw, Daniel, 2021. "TRIPLEX-Mortality model for simulating drought-induced tree mortality in boreal forests: Model development and evaluation," Ecological Modelling, Elsevier, vol. 455(C).
    7. Zihe, Liu & Guodong, Jia & Xinxiao, Yu & Weiwei, Lu & Libo, Sun & Yusong, Wang & Baheti, Zierdie, 2021. "Morphological trait as a determining factor for Populus simonii Carr. to survive from drought in semi-arid region," Agricultural Water Management, Elsevier, vol. 253(C).
    8. Dang, Hongzhong & Han, Hui & Chen, Shuai & Li, Mingyang, 2021. "A fragile soil moisture environment exacerbates the climate change-related impacts on the water use by Mongolian Scots pine (Pinus sylvestris var. mongolica) in northern China: Long-term observations," Agricultural Water Management, Elsevier, vol. 251(C).
    9. Donna L. Fitzgerald & Stefan Peters & Gregory R. Guerin & Andrew McGrath & Gunnar Keppel, 2023. "Quantifying Dieback in a Vulnerable Population of Eucalyptus macrorhyncha Using Remote Sensing," Land, MDPI, vol. 12(7), pages 1-19, June.
    10. Scheiter, Simon & Kumar, Dushyant & Pfeiffer, Mirjam & Langan, Liam, 2024. "Modeling drought mortality and resilience of savannas and forests in tropical Asia," Ecological Modelling, Elsevier, vol. 494(C).
    11. Xianliang Zhang & Tim Rademacher & Hongyan Liu & Lu Wang & Rubén D. Manzanedo, 2023. "Fading regulation of diurnal temperature ranges on drought-induced growth loss for drought-tolerant tree species," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    12. Guo, Youzheng & Ma, Yingjun & Ding, Changjun & Di, Nan & Liu, Yang & Tan, Jianbiao & Zhang, Shusen & Yu, Weichen & Gao, Guixi & Duan, Jie & Xi, Benye & Li, Ximeng, 2023. "Plant hydraulics provide guidance for irrigation management in mature polar plantation," Agricultural Water Management, Elsevier, vol. 275(C).
    13. Da Sois, Luca & Mencuccini, Maurizio & Castells, Eva & Sanchez-Martinez, Pablo & Martínez-Vilalta, Jordi, 2024. "How are physiological responses to drought modulated by water relations and leaf economics’ traits in woody plants?," Agricultural Water Management, Elsevier, vol. 291(C).
    14. Zhao Li & Philippe Ciais & Jonathon S. Wright & Yong Wang & Shu Liu & Jingmeng Wang & Laurent Z. X. Li & Hui Lu & Xiaomeng Huang & Lei Zhu & Daniel S. Goll & Wei Li, 2023. "Increased precipitation over land due to climate feedback of large-scale bioenergy cultivation," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    15. Song, Lining & Zhu, Jiaojun & Zheng, Xiao & Li, Xinjunyan & Wang, Kai & Zhang, Jinxin & Wang, Guochen & Sun, Haihong, 2023. "Water use dynamics of trees in a Pinus tabuliformis plantation in semiarid sandy regions, Northeast China," Agricultural Water Management, Elsevier, vol. 275(C).
    16. Mengyuan Zhang & Shuaipeng Chen & Wenping Liu, 2023. "Disentangling the Complexity of Regional Ecosystem Degradation: Uncovering the Interconnected Natural-Social Drivers of Quantity and Quality Loss," Land, MDPI, vol. 12(7), pages 1-18, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:558:y:2018:i:7711:d:10.1038_s41586-018-0240-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.