IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-39393-6.html
   My bibliography  Save this article

Mitochondrial aconitase suppresses immunity by modulating oxaloacetate and the mitochondrial unfolded protein response

Author

Listed:
  • Eunah Kim

    (Korea Advanced Institute of Science and Technology)

  • Andrea Annibal

    (Max Planck Institute for Biology of Ageing)

  • Yujin Lee

    (Korea Advanced Institute of Science and Technology)

  • Hae-Eun H. Park

    (Korea Advanced Institute of Science and Technology)

  • Seokjin Ham

    (Korea Advanced Institute of Science and Technology)

  • Dae-Eun Jeong

    (Pohang University of Science and Technology)

  • Younghun Kim

    (Korea Advanced Institute of Science and Technology)

  • Sangsoon Park

    (Korea Advanced Institute of Science and Technology)

  • Sujeong Kwon

    (Korea Advanced Institute of Science and Technology)

  • Yoonji Jung

    (Korea Advanced Institute of Science and Technology)

  • JiSoo Park

    (Korea Advanced Institute of Science and Technology)

  • Sieun S. Kim

    (Korea Advanced Institute of Science and Technology)

  • Adam Antebi

    (Max Planck Institute for Biology of Ageing
    University of Cologne)

  • Seung-Jae V. Lee

    (Korea Advanced Institute of Science and Technology)

Abstract

Accumulating evidence indicates that mitochondria play crucial roles in immunity. However, the role of the mitochondrial Krebs cycle in immunity remains largely unknown, in particular at the organism level. Here we show that mitochondrial aconitase, ACO-2, a Krebs cycle enzyme that catalyzes the conversion of citrate to isocitrate, inhibits immunity against pathogenic bacteria in C. elegans. We find that the genetic inhibition of aco-2 decreases the level of oxaloacetate. This increases the mitochondrial unfolded protein response, subsequently upregulating the transcription factor ATFS-1, which contributes to enhanced immunity against pathogenic bacteria. We show that the genetic inhibition of mammalian ACO2 increases immunity against pathogenic bacteria by modulating the mitochondrial unfolded protein response and oxaloacetate levels in cultured cells. Because mitochondrial aconitase is highly conserved across phyla, a therapeutic strategy targeting ACO2 may eventually help properly control immunity in humans.

Suggested Citation

  • Eunah Kim & Andrea Annibal & Yujin Lee & Hae-Eun H. Park & Seokjin Ham & Dae-Eun Jeong & Younghun Kim & Sangsoon Park & Sujeong Kwon & Yoonji Jung & JiSoo Park & Sieun S. Kim & Adam Antebi & Seung-Jae, 2023. "Mitochondrial aconitase suppresses immunity by modulating oxaloacetate and the mitochondrial unfolded protein response," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39393-6
    DOI: 10.1038/s41467-023-39393-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-39393-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-39393-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mark W. Pellegrino & Amrita M. Nargund & Natalia V. Kirienko & Reba Gillis & Christopher J. Fiorese & Cole M. Haynes, 2014. "Mitochondrial UPR-regulated innate immunity provides resistance to pathogen infection," Nature, Nature, vol. 516(7531), pages 414-417, December.
    2. Andrea Annibal & Rebecca George Tharyan & Maribel Fides Schonewolff & Hannah Tam & Christian Latza & Markus Max Karl Auler & Sebastian Grönke & Linda Partridge & Adam Antebi, 2021. "Regulation of the one carbon folate cycle as a shared metabolic signature of longevity," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    3. Varnesh Tiku & Chirag Jain & Yotam Raz & Shuhei Nakamura & Bree Heestand & Wei Liu & Martin Späth & H. Eka. D. Suchiman & Roman-Ulrich Müller & P. Eline Slagboom & Linda Partridge & Adam Antebi, 2017. "Small nucleoli are a cellular hallmark of longevity," Nature Communications, Nature, vol. 8(1), pages 1-9, December.
    4. Inmaculada Martínez-Reyes & Navdeep S. Chandel, 2020. "Mitochondrial TCA cycle metabolites control physiology and disease," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    5. Olli Matilainen & Maroun S. Bou Sleiman & Pedro M. Quiros & Susana M. D. A. Garcia & Johan Auwerx, 2017. "The chromatin remodeling factor ISW-1 integrates organismal responses against nuclear and mitochondrial stress," Nature Communications, Nature, vol. 8(1), pages 1-11, December.
    6. Andrea Annibal & Rebecca George Tharyan & Maribel Fides Schonewolff & Hannah Tam & Christian Latza & Markus Max Karl Auler & Sebastian Grönke & Linda Partridge & Adam Antebi, 2021. "Author Correction: Regulation of the one carbon folate cycle as a shared metabolic signature of longevity," Nature Communications, Nature, vol. 12(1), pages 1-1, December.
    7. Varnesh Tiku & Chun Kew & Parul Mehrotra & Raja Ganesan & Nirmal Robinson & Adam Antebi, 2018. "Nucleolar fibrillarin is an evolutionarily conserved regulator of bacterial pathogen resistance," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    8. Randall M. Chin & Xudong Fu & Melody Y. Pai & Laurent Vergnes & Heejun Hwang & Gang Deng & Simon Diep & Brett Lomenick & Vijaykumar S. Meli & Gabriela C. Monsalve & Eileen Hu & Stephen A. Whelan & Jen, 2014. "The metabolite α-ketoglutarate extends lifespan by inhibiting ATP synthase and TOR," Nature, Nature, vol. 510(7505), pages 397-401, June.
    9. Ying Liu & Buck S. Samuel & Peter C. Breen & Gary Ruvkun, 2014. "Caenorhabditis elegans pathways that surveil and defend mitochondria," Nature, Nature, vol. 508(7496), pages 406-410, April.
    10. Jonathan R. Friedman & Jodi Nunnari, 2014. "Mitochondrial form and function," Nature, Nature, vol. 505(7483), pages 335-343, January.
    11. Jae-Seong Yang & Hyun-Jun Nam & Mihwa Seo & Seong Kyu Han & Yonghwan Choi & Hong Gil Nam & Seung-Jae Lee & Sanguk Kim, 2011. "OASIS: Online Application for the Survival Analysis of Lifespan Assays Performed in Aging Research," PLOS ONE, Public Library of Science, vol. 6(8), pages 1-11, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hyo Sub Choi & Ajay Bhat & Marshall B. Howington & Megan L. Schaller & Rebecca L. Cox & Shijiao Huang & Safa Beydoun & Hillary A. Miller & Angela M. Tuckowski & Joy Mecano & Elizabeth S. Dean & Lindy , 2023. "FMO rewires metabolism to promote longevity through tryptophan and one carbon metabolism in C. elegans," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    2. Liankui Zhou & Liu Jiang & Lan Li & Chengchuan Ma & Peixue Xia & Wanqiu Ding & Ying Liu, 2024. "A germline-to-soma signal triggers an age-related decline of mitochondrial stress response," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    3. Yan-Ping Zhang & Wen-Hong Zhang & Pan Zhang & Qi Li & Yue Sun & Jia-Wen Wang & Shaobing O. Zhang & Tao Cai & Cheng Zhan & Meng-Qiu Dong, 2022. "Intestine-specific removal of DAF-2 nearly doubles lifespan in Caenorhabditis elegans with little fitness cost," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    4. Silvia Maglioni & Alfonso Schiavi & Marlen Melcher & Vanessa Brinkmann & Zhongrui Luo & Anna Laromaine & Nuno Raimundo & Joel N. Meyer & Felix Distelmaier & Natascia Ventura, 2022. "Neuroligin-mediated neurodevelopmental defects are induced by mitochondrial dysfunction and prevented by lutein in C. elegans," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    5. Nan Wu & Yi-Cheng Ma & Xin-Qian Gong & Pei-Ji Zhao & Yong-Jian Jia & Qiu Zhao & Jia-Hong Duan & Cheng-Gang Zou, 2023. "The metabolite alpha-ketobutyrate extends lifespan by promoting peroxisomal function in C. elegans," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    6. Juewon Kim & Yunju Jo & Donghyun Cho & Dongryeol Ryu, 2022. "L-threonine promotes healthspan by expediting ferritin-dependent ferroptosis inhibition in C. elegans," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    7. Donghua Hu & Min Tan & Dongliang Lu & Brian Kleiboeker & Xuejing Liu & Hongsuk Park & Alexxai V. Kravitz & Kooresh I. Shoghi & Yu-Hua Tseng & Babak Razani & Akihiro Ikeda & Irfan J. Lodhi, 2023. "TMEM135 links peroxisomes to the regulation of brown fat mitochondrial fission and energy homeostasis," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    8. Tuğçe Beyazay & Kendra S. Belthle & Christophe Farès & Martina Preiner & Joseph Moran & William F. Martin & Harun Tüysüz, 2023. "Ambient temperature CO2 fixation to pyruvate and subsequently to citramalate over iron and nickel nanoparticles," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    9. Guocheng Fang & Zhen Qiao & Luqi Huang & Hui Zhu & Jun Xie & Tian Zhou & Zhongshu Xiong & I-Hsin Su & Dayong Jin & Yu-Cheng Chen, 2024. "Single-cell laser emitting cytometry for label-free nucleolus fingerprinting," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    10. Sun Woo Sophie Kang & Rory P. Cunningham & Colin B. Miller & Lauryn A. Brown & Constance M. Cultraro & Adam Harned & Kedar Narayan & Jonathan Hernandez & Lisa M. Jenkins & Alexei Lobanov & Maggie Cam , 2024. "A spatial map of hepatic mitochondria uncovers functional heterogeneity shaped by nutrient-sensing signaling," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    11. Shuaifeng Li & Shixun Han & Qi Zhang & Yibing Zhu & Haitao Zhang & Junli Wang & Yang Zhao & Jianhui Zhao & Lin Su & Li Li & Dawang Zhou & Cunqi Ye & Xin-Hua Feng & Tingbo Liang & Bin Zhao, 2022. "FUNDC2 promotes liver tumorigenesis by inhibiting MFN1-mediated mitochondrial fusion," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    12. Rania El-Botty & Ludivine Morriset & Elodie Montaudon & Zakia Tariq & Anne Schnitzler & Marina Bacci & Nicla Lorito & Laura Sourd & Léa Huguet & Ahmed Dahmani & Pierre Painsec & Heloise Derrien & Soph, 2023. "Oxidative phosphorylation is a metabolic vulnerability of endocrine therapy and palbociclib resistant metastatic breast cancers," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    13. Hao Wu & Xiufeng Zhao & Sophia M. Hochrein & Miriam Eckstein & Gabriela F. Gubert & Konrad Knöpper & Ana Maria Mansilla & Arman Öner & Remi Doucet-Ladevèze & Werner Schmitz & Bart Ghesquière & Sebasti, 2023. "Mitochondrial dysfunction promotes the transition of precursor to terminally exhausted T cells through HIF-1α-mediated glycolytic reprogramming," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    14. Begoña López-Arias & Enrique Turiégano & Ignacio Monedero & Inmaculada Canal & Laura Torroja, 2017. "Presynaptic Aβ40 prevents synapse addition in the adult Drosophila neuromuscular junction," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-22, May.
    15. Marine Lanfranchi & Sozerko Yandiev & Géraldine Meyer-Dilhet & Salma Ellouze & Martijn Kerkhofs & Raphael Dos Reis & Audrey Garcia & Camille Blondet & Alizée Amar & Anita Kneppers & Hélène Polvèche & , 2024. "The AMPK-related kinase NUAK1 controls cortical axons branching by locally modulating mitochondrial metabolic functions," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    16. Kangqiang Qiu & Weiwei Zou & Hongbao Fang & Mingang Hao & Kritika Mehta & Zhiqi Tian & Jun-Lin Guan & Kai Zhang & Taosheng Huang & Jiajie Diao, 2022. "Light-activated mitochondrial fission through optogenetic control of mitochondria-lysosome contacts," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    17. Cesare Granata & Nikeisha J. Caruana & Javier Botella & Nicholas A. Jamnick & Kevin Huynh & Jujiao Kuang & Hans A. Janssen & Boris Reljic & Natalie A. Mellett & Adrienne Laskowski & Tegan L. Stait & A, 2021. "High-intensity training induces non-stoichiometric changes in the mitochondrial proteome of human skeletal muscle without reorganisation of respiratory chain content," Nature Communications, Nature, vol. 12(1), pages 1-18, December.
    18. Guohong, 2020. "Effects of Five Kinds of Drinking Water on the Lifespan of Daphnia Pulex," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 27(4), pages 20899-20903, May.
    19. Tao Zhang & Sarah E. Noll & Jesus T. Peng & Amman Klair & Abigail Tripka & Nathan Stutzman & Casey Cheng & Richard N. Zare & Alexandra J. Dickinson, 2023. "Chemical imaging reveals diverse functions of tricarboxylic acid metabolites in root growth and development," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    20. Laura Matabishi-Bibi & Drice Challal & Mara Barucco & Domenico Libri & Anna Babour, 2022. "Termination of the unfolded protein response is guided by ER stress-induced HAC1 mRNA nuclear retention," Nature Communications, Nature, vol. 13(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39393-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.