IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-36629-3.html
   My bibliography  Save this article

A trans-kingdom T6SS effector induces the fragmentation of the mitochondrial network and activates innate immune receptor NLRX1 to promote infection

Author

Listed:
  • Joana Sá-Pessoa

    (Queen’s University Belfast)

  • Sara López-Montesino

    (Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid and Instituto Ramón y Cajal de Investigaciones Sanitarias)

  • Kornelia Przybyszewska

    (Queen’s University Belfast)

  • Isabel Rodríguez-Escudero

    (Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid and Instituto Ramón y Cajal de Investigaciones Sanitarias)

  • Helina Marshall

    (Queen’s University Belfast)

  • Adelia Ova

    (Queen’s University Belfast)

  • Gunnar N. Schroeder

    (Queen’s University Belfast)

  • Peter Barabas

    (Queen’s University Belfast)

  • María Molina

    (Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid and Instituto Ramón y Cajal de Investigaciones Sanitarias)

  • Tim Curtis

    (Queen’s University Belfast)

  • Víctor J. Cid

    (Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid and Instituto Ramón y Cajal de Investigaciones Sanitarias)

  • José A. Bengoechea

    (Queen’s University Belfast)

Abstract

Bacteria can inhibit the growth of other bacteria by injecting effectors using a type VI secretion system (T6SS). T6SS effectors can also be injected into eukaryotic cells to facilitate bacterial survival, often by targeting the cytoskeleton. Here, we show that the trans-kingdom antimicrobial T6SS effector VgrG4 from Klebsiella pneumoniae triggers the fragmentation of the mitochondrial network. VgrG4 colocalizes with the endoplasmic reticulum (ER) protein mitofusin 2. VgrG4 induces the transfer of Ca2+ from the ER to the mitochondria, activating Drp1 (a regulator of mitochondrial fission) thus leading to mitochondrial network fragmentation. Ca2+ elevation also induces the activation of the innate immunity receptor NLRX1 to produce reactive oxygen species (ROS). NLRX1-induced ROS limits NF-κB activation by modulating the degradation of the NF-κB inhibitor IκBα. The degradation of IκBα is triggered by the ubiquitin ligase SCFβ-TrCP, which requires the modification of the cullin-1 subunit by NEDD8. VgrG4 abrogates the NEDDylation of cullin-1 by inactivation of Ubc12, the NEDD8-conjugating enzyme. Our work provides an example of T6SS manipulation of eukaryotic cells via alteration of the mitochondria.

Suggested Citation

  • Joana Sá-Pessoa & Sara López-Montesino & Kornelia Przybyszewska & Isabel Rodríguez-Escudero & Helina Marshall & Adelia Ova & Gunnar N. Schroeder & Peter Barabas & María Molina & Tim Curtis & Víctor J., 2023. "A trans-kingdom T6SS effector induces the fragmentation of the mitochondrial network and activates innate immune receptor NLRX1 to promote infection," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36629-3
    DOI: 10.1038/s41467-023-36629-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-36629-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-36629-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Simone M. Haag & Muhammet F. Gulen & Luc Reymond & Antoine Gibelin & Laurence Abrami & Alexiane Decout & Michael Heymann & F. Gisou van der Goot & Gerardo Turcatti & Rayk Behrendt & Andrea Ablasser, 2018. "Targeting STING with covalent small-molecule inhibitors," Nature, Nature, vol. 559(7713), pages 269-273, July.
    2. Chris B. Moore & Daniel T. Bergstralh & Joseph A. Duncan & Yu Lei & Thomas E. Morrison & Albert G. Zimmermann & Mary A. Accavitti-Loper & Victoria J. Madden & Lijun Sun & Zhengmao Ye & John D. Lich & , 2008. "NLRX1 is a regulator of mitochondrial antiviral immunity," Nature, Nature, vol. 451(7178), pages 573-577, January.
    3. Jonathan R. Friedman & Jodi Nunnari, 2014. "Mitochondrial form and function," Nature, Nature, vol. 505(7483), pages 335-343, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Merve Mutlu & Isabel Schmidt & Andrew I. Morrison & Benedikt Goretzki & Felix Freuler & Damien Begue & Oliver Simic & Nicolas Pythoud & Erik Ahrne & Sandra Kapps & Susan Roest & Debora Bonenfant & Del, 2024. "Small molecule induced STING degradation facilitated by the HECT ligase HERC4," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    2. Zhibin Lin & Peijun Yang & Yufeng Hu & Hao Xu & Juanli Duan & Fei He & Kefeng Dou & Lin Wang, 2023. "RING finger protein 13 protects against nonalcoholic steatohepatitis by targeting STING-relayed signaling pathways," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    3. Donghua Hu & Min Tan & Dongliang Lu & Brian Kleiboeker & Xuejing Liu & Hongsuk Park & Alexxai V. Kravitz & Kooresh I. Shoghi & Yu-Hua Tseng & Babak Razani & Akihiro Ikeda & Irfan J. Lodhi, 2023. "TMEM135 links peroxisomes to the regulation of brown fat mitochondrial fission and energy homeostasis," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    4. Mutian Jia & Li Chai & Jie Wang & Mengge Wang & Danhui Qin & Hui Song & Yue Fu & Chunyuan Zhao & Chengjiang Gao & Jihui Jia & Wei Zhao, 2024. "S-nitrosothiol homeostasis maintained by ADH5 facilitates STING-dependent host defense against pathogens," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    5. Sun Woo Sophie Kang & Rory P. Cunningham & Colin B. Miller & Lauryn A. Brown & Constance M. Cultraro & Adam Harned & Kedar Narayan & Jonathan Hernandez & Lisa M. Jenkins & Alexei Lobanov & Maggie Cam , 2024. "A spatial map of hepatic mitochondria uncovers functional heterogeneity shaped by nutrient-sensing signaling," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    6. Katelyn C. Cook & Elene Tsopurashvili & Jason M. Needham & Sunnie R. Thompson & Ileana M. Cristea, 2022. "Restructured membrane contacts rewire organelles for human cytomegalovirus infection," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    7. Shuaifeng Li & Shixun Han & Qi Zhang & Yibing Zhu & Haitao Zhang & Junli Wang & Yang Zhao & Jianhui Zhao & Lin Su & Li Li & Dawang Zhou & Cunqi Ye & Xin-Hua Feng & Tingbo Liang & Bin Zhao, 2022. "FUNDC2 promotes liver tumorigenesis by inhibiting MFN1-mediated mitochondrial fusion," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    8. Chiara Scopa & Samantha M. Barnada & Maria E. Cicardi & Mo Singer & Davide Trotti & Marco Trizzino, 2023. "JUN upregulation drives aberrant transposable element mobilization, associated innate immune response, and impaired neurogenesis in Alzheimer’s disease," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    9. Jeremy J. Ratiu & William E. Barclay & Elliot Lin & Qun Wang & Sebastian Wellford & Naren Mehta & Melissa J. Harnois & Devon DiPalma & Sumedha Roy & Alejandra V. Contreras & Mari L. Shinohara & David , 2022. "Loss of Zfp335 triggers cGAS/STING-dependent apoptosis of post-β selection thymocytes," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    10. Martha Triantafilou & Joshi Ramanjulu & Lee M. Booty & Gisela Jimenez-Duran & Hakan Keles & Ken Saunders & Neysa Nevins & Emma Koppe & Louise K. Modis & G. Scott Pesiridis & John Bertin & Kathy Triant, 2022. "Human rhinovirus promotes STING trafficking to replication organelles to promote viral replication," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    11. Kangqiang Qiu & Weiwei Zou & Hongbao Fang & Mingang Hao & Kritika Mehta & Zhiqi Tian & Jun-Lin Guan & Kai Zhang & Taosheng Huang & Jiajie Diao, 2022. "Light-activated mitochondrial fission through optogenetic control of mitochondria-lysosome contacts," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    12. Mutian Jia & Yuanyuan Wang & Jie Wang & Danhui Qin & Mengge Wang & Li Chai & Yue Fu & Chunyuan Zhao & Chengjiang Gao & Jihui Jia & Wei Zhao, 2023. "Myristic acid as a checkpoint to regulate STING-dependent autophagy and interferon responses by promoting N-myristoylation," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    13. Matteo Gentili & Bingxu Liu & Malvina Papanastasiou & Deborah Dele-Oni & Marc A. Schwartz & Rebecca J. Carlson & Aziz M. Al’Khafaji & Karsten Krug & Adam Brown & John G. Doench & Steven A. Carr & Nir , 2023. "ESCRT-dependent STING degradation inhibits steady-state and cGAMP-induced signalling," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    14. Haruka Kemmoku & Kanoko Takahashi & Kojiro Mukai & Toshiki Mori & Koichiro M. Hirosawa & Fumika Kiku & Yasunori Uchida & Yoshihiko Kuchitsu & Yu Nishioka & Masaaki Sawa & Takuma Kishimoto & Kazuma Tan, 2024. "Single-molecule localization microscopy reveals STING clustering at the trans-Golgi network through palmitoylation-dependent accumulation of cholesterol," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    15. Maritza Puray-Chavez & Jenna E. Eschbach & Ming Xia & Kyle M. LaPak & Qianzi Zhou & Ria Jasuja & Jiehong Pan & Jian Xu & Zixiang Zhou & Shawn Mohammed & Qibo Wang & Dana Q. Lawson & Sanja Djokic & Gao, 2024. "A basally active cGAS-STING pathway limits SARS-CoV-2 replication in a subset of ACE2 positive airway cell models," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    16. Yan Zou & Yajing Sun & Yibin Wang & Dongya Zhang & Huiqing Yang & Xin Wang & Meng Zheng & Bingyang Shi, 2023. "Cancer cell-mitochondria hybrid membrane coated Gboxin loaded nanomedicines for glioblastoma treatment," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    17. Hervé Técher & Diyavarshini Gopaul & Jonathan Heuzé & Nail Bouzalmad & Baptiste Leray & Audrey Vernet & Clément Mettling & Jérôme Moreaux & Philippe Pasero & Yea-Lih Lin, 2024. "MRE11 and TREX1 control senescence by coordinating replication stress and interferon signaling," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    18. Kanwar Abhay Singh & John Soukar & Mohammad Zulkifli & Anna Kersey & Giriraj Lokhande & Sagnika Ghosh & Aparna Murali & Natalie M. Garza & Harman Kaur & Justin N. Keeney & Ramu Banavath & Hatice Ceyla, 2024. "Atomic vacancies of molybdenum disulfide nanoparticles stimulate mitochondrial biogenesis," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    19. Emma Puighermanal & Marta Luna-Sánchez & Alejandro Gella & Gunter van der Walt & Andrea Urpi & María Royo & Paula Tena-Morraja & Isabella Appiah & Maria Helena de Donato & Fabien Menardy & Patrizia Bi, 2024. "Cannabidiol ameliorates mitochondrial disease via PPARγ activation in preclinical models," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    20. Sarah Rösing & Fabian Ullrich & Susann Meisterfeld & Franziska Schmidt & Laura Mlitzko & Marijana Croon & Ryan G Nattrass & Nadia Eberl & Julia Mahlberg & Martin Schlee & Anja Wieland & Philipp Simon , 2024. "Chronic endoplasmic reticulum stress in myotonic dystrophy type 2 promotes autoimmunity via mitochondrial DNA release," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36629-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.